化工学报 ›› 2018, Vol. 69 ›› Issue (1): 166-174.DOI: 10.11949/j.issn.0438-1157.20171018
刘壮1,2, 汪伟1,2, 巨晓洁1,2, 谢锐1,2, 褚良银1,2
收稿日期:
2017-07-31
修回日期:
2017-11-08
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
褚良银
基金资助:
国家自然科学基金项目(21490582,21506127)。
LIU Zhuang1,2, WANG Wei1,2, JU Xiaojie1,2, XIE Rui1,2, CHU Liangyin1,2
Received:
2017-07-31
Revised:
2017-11-08
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171018
Supported by:
supported by the National Natural Science Foundation of China (21490582, 21506127).
摘要:
限域传质是流体分子通过与其运动自由程相当的传质空间的过程,流体分子与限域壁面的作用与和流体分子间的相互作用决定了传质效率。当碳通道尺寸小于10 nm时,由于其壁面具有无摩擦效应,导致传质阻力小;因此,具有限域传质效应的碳基分离膜传质通量和选择性都高,有望成功突破渗透性和选择性的博弈效应。本文综述了近年来具有限域传质效应的碳基分离膜的研究进展,主要介绍了两类碳基分离膜,规整排列的碳纳米管膜和层层堆叠的石墨烯膜,概述了这两类膜的限域传质机理、构筑方法及其在水处理、脱水、脱盐、离子分离、气体分离等领域的应用。此外,展望了具有限域传质效应的碳基分离膜的发展及需要解决的问题。为创制新一代兼具高渗透性和高选择性的限域传质效应的分离膜的设计制备与应用提供了参考。
中图分类号:
刘壮, 汪伟, 巨晓洁, 谢锐, 褚良银. 具有限域传质效应的碳基分离膜——从碳纳米管膜到石墨烯膜[J]. 化工学报, 2018, 69(1): 166-174.
LIU Zhuang, WANG Wei, JU Xiaojie, XIE Rui, CHU Liangyin. Carbon-based membranes with confinement effect for mass transport: from carbon nano-tube membranes to graphene membranes[J]. CIESC Journal, 2018, 69(1): 166-174.
[1] | LIVELY R P, SHOLL D S. From water to organics in membrane separations[J]. Nature Materials, 2017, 16:276-279. |
[2] | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12):4-9. XU N P, GAO C J, JIN W Q. Innovations of membrane science and technology in China[J]. Engineering Science, 2014, 16(12):4-9. |
[3] | MULDER M. Basic Principles of Membrane Technology[M]. Dordrecht:Kluwer Academic Publishers, 1996. |
[4] | 时均, 袁权, 高从堦. 膜技术手册[M]. 北京:化学工业出版社, 2001. SHI J, YUAN Q, GAO C J. Handbook of Membrane Technology[M]. Beijing:Chemical Industry Press, 2001. |
[5] | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310. |
[6] | CHAPMAN P D, OLIVERIA T, LIVINGSTON A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. J. Membrane Sci., 2008, 318(1):5-37. |
[7] | WANG Y J, QIAP J, BAKER R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem. Soc. Rev., 2013, 42(13):5768-5787. |
[8] | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review:recent advances and future prospects[J]. Desalination, 2015, 356:226-254. |
[9] | KIM S, LEE Y M. Rigid and microporous polymers for gas separation membranes[J]. Prog. Polym. Sci., 2015, 43:1-32. |
[10] | RAN J, WU L, HE Y, et al. Ion exchange membranes:new developments and applications[J]. J. Membrane Sci., 2017, 522:267-291. |
[11] | BAKER R W. Membrane Technology and Applications[M]. California:John Wiley & Sons, 2004. |
[12] | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62:223-232. ZHU Y D, LU X H, XIE W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chin. Sci. Bull., 2017, 62:223-232. |
[13] | DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification:a bright future in water desalination[J]. Desalination, 2014, 336:97-109. |
[14] | LIU G, JIN W, XU N. Graphene-based membranes[J]. Chem. Soc. Rev., 2015, 44(15):5016-5030. |
[15] | SUN P, WANG K, ZHU H. Recent developments in graphene-based membranes:structure, mass-transport mechanism and potential applications[J]. Adv. Mater., 2016, 28(12):2287-2310. |
[16] | GOH K, KARAHAN H E, WEI L, et al. Carbon nanomaterials for advancing separation membranes:a strategic perspective[J]. Carbon, 2016, 109:694-710. |
[17] | LIU Z, WANG W, JU X, et al. Graphene-based membranes for molecular and ionic separations in aqueous environments[J]. Chinese J. Chem. Eng., doi:10.1016/j.cjche.2017.05.008. |
[18] | HOLT J K, PARK H G, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. |
[19] | NAIR R R, WU H A, JAYARAMP N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444. |
[20] | PARK H B, KAMCEY J, ROBESON L M, et al. Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530. |
[21] | HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860):188-190. |
[22] | BEREZHKOVSKⅡ A, HUMMER G. Single-file transport of water molecules through a carbon nanotube[J]. Phys. Rev. Lett., 2002, 89(6):064503. |
[23] | SECCHI E, MARBACH S, NIGUES A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619):210-213. |
[24] | KANNAM S K, TODD B D, HANSEN J S, et al. How fast does water flow in carbon nanotubes?[J]. J. Chem. Phys., 2013, 138(9):094701. |
[25] | HINDS B J, CHOPRA N, RANTELL T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science, 2004, 303(5654):62-65. |
[26] | MAJUMDER M, CHOPRA N, ANDREWS R, et al. Nanoscale hydrodynamics:enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44-44. |
[27] | HOLT J K, PARK H G, WANG Y S, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776), 1034-1037. |
[28] | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Rev. Mater., 2016, 1:16018. |
[29] | RASHID M H O, RALPH S F. Carbon nanotube membranes:synthesis, properties, and future filtration applications[J]. Nanomaterials, 2017, 7(5):99. |
[30] | LEE J, JEONG S, LIU Z. Progress and challenges of carbon nanotube membrane in water treatment[J]. Crit. Rev. Env. Sci. Tec., 2016, 46(11/12):999-1046. |
[31] | AHN C H, BAEK Y, LEE C, et al. Carbon nanotube-based membranes:fabrication and application to desalination[J]. J. Ind. Eng. Chem., 2012, 18(5):1551-1559. |
[32] | SAUFI S M, ISMAIL A F. Fabrication of carbon membranes for gas separation-a review[J]. Carbon, 2004, 42(2):241-259. |
[33] | CORRY B. Water and ion transport through functionalised carbon nanotubes:implications for desalination technology[J]. Energ. Environ. Sci., 2011, 4(3):751-759. |
[34] | CORRY B. Designing carbon nanotube membranes for efficient water desalination[J]. J. Phys. Chem. B, 2008, 112(5):1427-1434. |
[35] | ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon:a review of graphene[J]. Chem. Rev., 2009, 110(1):132-145. |
[36] | GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534. |
[37] | BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8):2458-2462. |
[38] | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem. Soc. Rev., 2010, 39(1):228-240. |
[39] | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7):3602-3608. |
[40] | SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnol., 2015, 10(5):459-464. |
[41] | 邓会, 孙鹏展, 张迎九, 等. 石墨烯材料在水处理中的应用:传质机制与吸附特性[J]. 科学通报, 2015, 60(33):3196-3209. DENG H, SUN P Z, ZHANG Y J, et al. Applications of graphene-based materials in water treatment:mass transport and pollutants adsorption properties[J]. Chinese Science Bulletin, 2015, 60(33):3196-3209. |
[42] | BOUKHVALOV D W, KATSNELSON M I, SON Y W. Origin of anomalous water permeation through graphene oxide membrane[J]. Nano Letters, 2013, 13(8):3930-3935. |
[43] | TSOU C H, AN Q F, LO S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J. Membrane Sci., 2015, 477:93-100. |
[44] | GOH K, SETIAWAN L, WEI L, et al. Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process[J]. J. Membrane Sci., 2015, 474:244-253. |
[45] | SUN P, ZHU M, WANG K, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2012, 7(1):428-437. |
[46] | BREITWIESER M, BAYER T, BUCHLER A, et al. A fully spray-coated fuel cell membrane electrode assembly using aquivion ionomer with a graphene oxide/cerium oxide interlayer[J]. J. Power Sources, 2017, 351:145-150. |
[47] | KIM H W, YOON H W, YOON S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154):91-95. |
[48] | BECERRIL H A, MAO J, LIU Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3):463-470. |
[49] | AKBARI A, SHEATH P, MARTIN S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Commun., 2016, 7:10891. |
[50] | XI Y H, HU J Q, LIU Z, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing[J]. ACS Appl. Mater. Inter., 2016, 8(24):15557-15566. |
[51] | MI B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172):740-742. |
[52] | HUANG K, LIU G, LOU Y, et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J]. Angew. Chem. Int. Edit., 2014, 53(27):6929-6932. |
[53] | HUNG W S, AN Q F, DE GUZMAN M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68:670-677. |
[54] | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172):752-754. |
[55] | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotech., 2017, 12(6):546-550. |
[56] | HONG S, CONSTANS C, SURMANI MARTINS M V, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2):728-732. |
[57] | LIU H, WANG H, ZHANG X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification[J]. Adv. Mater., 2015, 27(2):249-254. |
[58] | GEISE G M, PARK H B, SAGLE A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. J. Membrane Sci., 2011, 369(1):130-138. |
[59] | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530. |
[60] | LI H, SONG Z, ZHANG X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154):95-98. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[13] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||