[1] |
ZHU Y D, ZHOU J, LU X H, et al. Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications[J]. Microfluidics and Nanofluidics, 2013, 15(2):191-205.
|
[2] |
HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037.
|
[3] |
FORNASIERO F, PARK H G, HOLT J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45):17250-17255.
|
[4] |
PETER A. Membrane water transport and aquaporins:looking back[J]. Biology of the Cell, 2005, 97(6):355-356.
|
[5] |
JIA Y X, LI H L, WANG M, et al. Carbon nanotube:possible candidate for forward osmosis[J]. Separation and Purification Technology, 2010, 75(1):55-60.
|
[6] |
ALEXIADIS A, KASSINOS S. Self-diffusivity, hydrogen bonding and density of different water models in carbon nanotubes[J]. Molecular Simulation, 2008, 34(7):671-678.
|
[7] |
SHI W, LUEBKE D R. Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim] [Tf2N]) confined in silica slit pores:a molecular simulation study[J]. Langmuir, 2013, 29(18):5563-5572.
|
[8] |
SPARREBOOM W, BERG A V D, EIJKEL J C T. Transport in nanofluidic systems:a review of theory and applications[J]. New Journal of Physics, 2010, 12:015004.
|
[9] |
GIOVAMBATTISTA N, ROSSKY P J, DEBENEDETTI P G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates[J]. Physical Review E, 2006, 73:041604.
|
[10] |
AGRAWAL K V, SHIMIZU S, DRAHUSHUK L W, et al. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes[J]. Nature Nanotechnology, 2016, 12:267-273.
|
[11] |
THOMAS J A, MCGAUGHEY A J H. Reassessing fast water transport through carbon nanotubes[J]. Nano Letters, 2008, 8(9):2788-2793.
|
[12] |
KATAOKA T, TSURU T, NAKAO S I, et al. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse-osmosis based on the solution-diffusion model[J]. Journal of Chemical Engineering of Japan, 1991, 24(3):326-333.
|
[13] |
OKADA T, MATSUURA T. A new transport model for pervaporation[J]. Journal of Membrane Science, 1991, 59(2):133-149.
|
[14] |
陆小华, 吉远辉, 刘洪来, 非平衡热力学在界面传递过程中的应用[J]. 中国科学-化学, 2011, 41(9):1540-1547. LU X H, JI Y H, LIU H L. Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer[J]. Science China Chemistry, 2011, 41(9):1540-1547.
|
[15] |
CHEN H M, HUNG W S, LO C H, et al. Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy:layer structure from interfacial polymerization[J]. Macromolecules, 2007, 40(21):7542-7557.
|
[16] |
CAO W, TOW G M, LU L H, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17):2530-2540.
|
[17] |
WANG Y Y, XU J B, YANG C. Fluid inhomogeneity within nanoslits and deviation from Hagen-Poiseuille flow[J]. AIChE J., 2017, 63(2):834-842.
|
[18] |
RUAN Y, ZHU Y D, ZHANG Y M, et al. Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores:the role of dehydration in second shell[J]. Langmuir, 2016, 32(51):13778-13786.
|
[19] |
HUANG K, LIU G P, LOU Y Y, et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J]. Angewandte Chemie International Edition, 2014, 53(27):6929-6932.
|
[20] |
HUANG K, LIU G P, SHEN J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36):5809-5815.
|
[21] |
SHEN J, LIU G P, JIN W Q, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54:578-582.
|
[22] |
SHEN J, LIU G P, HUANG K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10:3398-3409.
|
[23] |
WANG S F, WU Y Z, ZHANG N, et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture[J]. Energy & Environmental Science, 2016, 9:3107-3112.
|
[24] |
HE G W, XU M Z, ZHAO J, et al. Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels[J]. Advanced Materials, 2017, 29(28):1605898.
|
[25] |
JI J Y, LIU J L, LAI L F, et al. In-situ activation of nitrogen-doped graphene anchored on graphite foam for a high capacity anode[J]. ACS Nano, 2015, 9(8):8609-8616.
|
[26] |
CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550:380-383.
|
[27] |
GE X L, HE Y B, GUIVER M D, et al. Alkaline anion-exchange membranes containing mobile ion shuttles[J]. Advanced Materials, 2016, 28(18):3467-3472.
|
[28] |
YANG Z J, GUO R, EVANS R M, et al. Highly conductive anion exchange membranes from microporous tröger's base polymers[J]. Angewandte Chemie International Edition, 2016, 128(38):11671-11674.
|
[29] |
RANGNEKAR N, ELYASSI B, CARO J, et al. Zeolite membranes-a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44:7128-7154.
|
[30] |
GE L, WU B, LI Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498:192-200.
|