[1] |
MOGGRIDGE G D, CUSSLER E L. Chemical Product Design[M]. London:Cambridge University Press, 2001
|
[2] |
NISHIDA N, STEPHANOPOULOS G, WESTERBERG A W. A review of process synthesis[J]. AIChE J., 1981, 27(3):321-351.
|
[3] |
COREY E J, HOWE W J, PENSAK D A. Computer-assisted synthetic analysis-methods for machine generation of synthetic intermediates involving multi-step look ahead[J]. Chemischer Informationsdienst, 1974, 6(8):7724-7737.
|
[4] |
PARENTY A D C, BUTTON W G, OTT M A. An expert system to predict the forced degradation of organic molecules[J]. Mol. Pharm., 2013, 10(8):2962-2974.
|
[5] |
UGI I K, BAUMGARTNER R, FONTAIN E, et al. Computer programs for the solution of chemical problems by molecular logic[J]. Pure Appl. Chem., 1988, 60(11):1573-1586.
|
[6] |
UGI I K, GILLESPIE P. Chemistry and logic structure(Ⅲ):Representation of chemical systems and interconversion by BE matrices and their transformation properties[J]. Angew. Chem. Int. Ed., 1971, 10(12):914-915.
|
[7] |
WANG L P, TITOV A, MCGIBBON R, et al. Discovering chemistry with an ab initio nanoreactor[J]. Nat. Chem., 2014, 6(12):1044-1048.
|
[8] |
ARIS R, MAH R H S. Independence of chemical reactions[J]. Reaction Kinetics & Catalysis Letters, 1987, 33(1):9-15.
|
[9] |
BONVIN D, RIPPIN D W T. Target factor analysis for the identification of stoichiometric models[J]. Chem. Eng. Sci., 1990, 45(12):2417-2426.
|
[10] |
BHATT N, KERIMOGLU N, AMRHEIN M, et al. Incremental identification of reaction systems-a comparison between rate-based and extent-based approaches[J]. Chem. Eng. Sci., 2012, 83(49):24-38.
|
[11] |
BURNHAM S C, SEARSON D P, WILLIS M J, et al. Inference of chemical reaction networks[J]. Chem. Eng Sci., 2008, 63(4):862-873.
|
[12] |
FRANCESCHINI G, MACCHIETTO S. Novel anticorrelation criteria for design of experiments:algorithm and application[J]. AIChE J., 2008, 54(12):3221-3238.
|
[13] |
GALVANIN F, BAROLO M, BEZZO F, et al. A back off strategy for model-based experiment design under parametric uncertainty[J]. AIChE J., 2010, 56(8):2088-2102.
|
[14] |
LUNA M, MARTINEZ E A. Bayesian approach to run-to-run optimization of animal cell bioreactors using probabilistic tendency models[J]. Ind. Eng. Chem. Res., 2014, 53(44):17252-17266.
|
[15] |
ZHANG W. Model building methodology for complex reaction systems[D]. Manchester:University of Manchester Institute of Science and Technology, 2004.
|
[16] |
ZHANG W, MICHAEL B, CONSTANTIONS T, et al. Model building methodology for complex reaction systems[J]. Ind. Eng. Chem. Res., 2015, 54(16):4603-4615
|
[17] |
ZIMMERMAN P M. Automated discovery of chemically reasonable elementary reaction steps[J]. J. Comput. Chem., 2013, 34(16):1385.
|
[18] |
HOLIASTOS K, MANOUSIOUTHAKIS V. Automatic synthesis of thermodynamically feasible reaction clusters[J]. AIChE J., 1998, 44(1):164-173.
|
[19] |
BINNS M, THEODOROPOULOS C. An integrated knowledge-based approach for modeling biochemical reaction networks[J]. Comput. Chem.Eng., 2011, 35(12):3025-3043.
|
[20] |
张斌, 李政, 江宁, 等. 基于Aspen Plus建立气流床煤气化炉模型[J]. 化工学报, 2003, 54(8):1179-1182. ZHANG B, LI Z, JIANG N, et al. Modeling of entrained bed coal gasifiers with Aspen Plus[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(8):1179-1182.
|
[21] |
欧阳朝斌, 段东平, 郭占成, 等. 天然气-煤共气化制备合成气热态模拟[J]. 化工学报, 2005, 56(10):1936-1941. OUYANG Z B, DUAN D P, GUO Z C, et al. Natural gas &coal co-gasification to produce synthesis gas in hot simulation[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(10):1936-1941.
|
[22] |
陈新明, 史绍平, 闫姝, 等. 燃烧前CO2 捕集技术在IGCC发电中的应用[J]. 化工学报, 2014, 65(8):3193-3201. CHEN X M, SHI S P, YAN S, et al. Application of CO2 capture technology before burning in IGCC power generation system[J]. CIESC Journal, 2014, 65(8):3193-3201.
|
[23] |
孙付成, 任强强, 王昕, 等. 循环流化床煤气化细粉灰硫氮转化分析[J]. 锅炉技术, 2015, 46(1):33-44. SUN F C, REN Q Q, WANG X, et al. Circulating fluidized bed coal gasification thin blues sulfur nitrogen transformation analysis[J]. Boiler Technology, 2015, 46(1):33-44.
|
[24] |
徐惠彦. 库伦法测定煤中全硫的影响因素及措施[J]. 经济技术协作信息, 2016, (3):88. XU H Y. Determination the influence factors of total sulfur in coal by coulomb method and measures[J]. Economic and Technological Cooperation Information, 2016, (3):88.
|
[25] |
张婷, 郭庆华, 梁钦锋, 等. 煤气化过程中含硫化合物生成特性的热力学研究[J]. 中国电机工程学报, 2011, 31(11):32-38. ZHANG T, GUO Q H, LIANG Q F, et al. The generation properties of sulfur compounds during coal gasification by thermodynamic equilibrium simulation[J]. Proceedings of the CSEE, 2011, 31(11):32-38.
|
[26] |
徐有宁, 张忠东, 李静海, 等. 抑制氮氧化物无烟燃煤炉内煤气化过程[J]. 化工学报, 2000, 51(S1):122-125. XU Y N, ZHANG Z D, LI J H, et al. Inhibition of nitrogen oxide smokeless coal coal gasification process in the furnace[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(S1):122-125.
|
[27] |
陈玉, 张福丽, 姚辉超. 催化水煤气变化反应的计算模拟进展[J].化工进展, 2012, 31(10):2221-2227. CHEN Y, ZHANG F L, YAO H C. The computational simulation progress of catalytic water gas change reaction[J]. Chem. Ind. Eng. Prog., 2012, 31(10):2221-2227.
|
[28] |
KI H K, 付国伟, 杜国萍. 水煤气转换反应中氢的重整过程分析[J]. 现代冶金, 2015, (1):75-76. KI H K, FU G W, DU G P. The analysis of reforming process about hydrogen in the water gas conversion reaction[J]. Modern Metallurgy, 2015, (1):75-76.
|
[29] |
潘婵婵, 刘霞, 霍威, 等. 煤气化细灰及其原煤的热解特性与官能团特征[J]. 化工学报, 2015, 66(4):1449-1458. PAN C C, LIU X, HUO W, et al. Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals[J]. CIESC Journal, 2015, 66(4):1449-1458.
|
[30] |
黎军. 德士古水煤浆加压气化技术[R]. 淮南化工, 2012. LI J. Texaco coal-water slurry pressurized gasification technology[R]. Huainan Chemical, 2012.
|