化工学报 ›› 2019, Vol. 70 ›› Issue (1): 72-82.DOI: 10.11949/j.issn.0438-1157.20180368
收稿日期:
2018-04-03
修回日期:
2018-11-07
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘中良
作者简介:
李静岩(1992—),男,硕士研究生,<email>lijingyan@emails.bjut.edu.cn</email>|刘中良(1958—),男,博士,教授,<email>liuzhl@bjut.edu.cn</email>
Jingyan LI(),Zhongliang LIU(),Yu ZHOU,Yanxia LI
Received:
2018-04-03
Revised:
2018-11-07
Online:
2019-01-05
Published:
2019-01-05
Contact:
Zhongliang LIU
摘要:
建立了CO2羽流地热系统(CPGS)热开采过程的热流固(THM)耦合模型,结合五点布井方案和多岩层三维几何模型,对一理想热储进行CPGS热开采数值模拟。分析了CPGS热开采过程中热储内的岩体变形特征及其对系统采热性能的影响,并研究了THM耦合下热储初始孔隙率对CPGS热开采的影响。结果表明:CPGS的运行会引起岩体的冷却收缩,造成热储表观体积的减小和热储孔隙率的增大,这有助于提高热储渗透率,加快地热开采速率,从而对地热开采产生积极影响。初始孔隙率越小,岩体变形对热开采的影响越明显。在假设初始渗透率相同的情况下,初始孔隙率越小,岩体变形引起的渗透率增幅越大,系统的热开采速率越快。
中图分类号:
李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal, 2019, 70(1): 72-82.
参数 | 热储 | 盖岩和基岩 |
---|---|---|
厚度/m | 100 | 500 |
孔隙率 | 0.03 | 0 |
渗透率/m2 | 5 × 10-14 | N/A |
密度/(kg·m-3) | 2600 | 2600 |
比热容/(J·(kg·K)-1) | 1000 | 1000 |
热导率/(W·(m·K)-1) | 2.5 | 2.5 |
杨氏模量/GPa | 17 | 17 |
泊松比 | 0.25 | 0.25 |
Biot系数 | 0.47 | 0.47 |
热膨胀系数/K-1 | 1×10-5 | 1 × 10-5 |
残余水饱和度 | 0.3 | N/A |
残余气饱和度 | 0.05 | N/A |
Brooks-Corey系数 | 2 | N/A |
孔隙注入压力/kPa | 20 | N/A |
表1 各岩层水文物性参数
Table 1 Hydrological and physical property parameter of rock stratum
参数 | 热储 | 盖岩和基岩 |
---|---|---|
厚度/m | 100 | 500 |
孔隙率 | 0.03 | 0 |
渗透率/m2 | 5 × 10-14 | N/A |
密度/(kg·m-3) | 2600 | 2600 |
比热容/(J·(kg·K)-1) | 1000 | 1000 |
热导率/(W·(m·K)-1) | 2.5 | 2.5 |
杨氏模量/GPa | 17 | 17 |
泊松比 | 0.25 | 0.25 |
Biot系数 | 0.47 | 0.47 |
热膨胀系数/K-1 | 1×10-5 | 1 × 10-5 |
残余水饱和度 | 0.3 | N/A |
残余气饱和度 | 0.05 | N/A |
Brooks-Corey系数 | 2 | N/A |
孔隙注入压力/kPa | 20 | N/A |
图12 不同初始孔隙率下井间连线AB上的渗透率比率分布(系统运行至15年时)
Fig.12 Permeability ratio distribution of inter-well line AB with different initial porosities (operating time: 15 years)
1 | HollowayS. Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth[J]. Annual Review Energy Environment, 2001, 26: 145-166. |
2 | WestJ M, PearceJ, BenthamM, et al. Issue profile: environmental issues and the geological storage of CO2[J]. European Environment, 2005, 15: 250-259. |
3 | GentzisT. Subsurface sequestration of carbon dioxide—an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology, 2000, 43:287-305. |
4 | GoughC. State of the art in carbon dioxide capture and storage in the UK: an experts review[J]. International Journal of Greenhouse Gas Control, 2008, 2:155-168. |
5 | HollowayS. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option[J]. Energy, 2005, 30:2318-2333. |
6 | MetzB, DavidsonO R, BoschP R, et al. Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007. |
7 | BrownD. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford,2000: 233-238. |
8 | PruessK. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351-367. |
9 | PruessK. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids[R]. Berkeley: Lawrence Berkeley National Laboratory, 2007. |
10 | PruessK. On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system[C]//Proceedings of the Thirty-first Workshop on Geothermal Reservoir Engineering. Stanford, 2006. |
11 | PruessK. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454. |
12 | MajerE L, BariaR, StarkM, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36: 185-222. |
13 | RandolphaJ B, SaarM O. Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems[J]. GRC Trans., 2010, 34:433-438. |
14 | RandolphaJ B, SaarM O. Combining geothermal energy capture with geologic carbon dioxide sequestration [J]. Geophysical Research Letters, 2011, 38: L10401. |
15 | RandolphaJ B, SaarM O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration[J]. Energy Procedia, 2011, 4: 2206-2213. |
16 | ZhangL, EzekielJ, LiD, et al. Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122: 237-246. |
17 | XuT, FengG, ShiY. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 2014, 144: 179-193. |
18 | GhassemiA, ZhouX. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems [J]. Geothermics, 2011, 40(1): 39-49. |
19 | KohJ, RoshanH, RahmanS S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs [J]. Computers and Geotechnics, 2011, 38(5): 669-682. |
20 | JingY, JingZ, Willis-RichardsJ, et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir [J]. Journal of Volcanology & Geothermal Research, 2014, 269: 14-22. |
21 | 曹文炅, 黄文博, 蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展, 2015, 3(6): 444-451. |
CaoW J, HuangW B, JiangF M. The thermal-hydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems [J]. Journal of Circuits and Systems, 2015, 3(6): 444-451. | |
22 | HicksT W, PineR J, Willis-RichardsJ, et al. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 499-511. |
23 | TaronJ, ElsworthD. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 855-864. |
24 | TaronJ, ElsworthD, MinK B. Numerical simulation of thermal-hydrologic-mechanical- chemical processes in deformable, fractured porous media [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 842-854. |
25 | McDermottC I, RandriamanjatosoaA R L, TenzerH, et al. Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling [J]. Geothermics, 2006, 35(3): 321-344. |
26 | 李静岩, 刘中良, 周宇, 等. 热储上下岩层热补偿作用对CO2羽流地热系统性能的影响[J]. 化工学报, 2017, 68(12): 4526-4536. |
LiJ Y, LiuZ L, ZhouY, et al. Influence of thermal compensation of geothermal reservoir rock formation on CO2 plume geothermal system performance [J]. CIESC Journal, 2017, 68(12): 4526-4536. | |
27 | FagerlundF F, NiemiA, OdenM. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated,layered media[J]. Advances in Water Resources, 2006, 29(11): 1705-1730. |
28 | 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419-426 |
LiP C, KongX Y, LuD T. Mathematical modeling of flow in saturated porous media on account of fluid-solid coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426. | |
29 | 戴永浩, 陈卫忠, 伍国军, 等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报, 2008, 27(4): 728-735. |
DaiY H, ChenW Z, WuG J, et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 728-735. | |
30 | 魏铭聪, 杨冰, 许天福, 等. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J]. 地质科技情报, 2015, 34(2): 188-193. |
WeiM C, YangB, XuT F, et al. Effects of well spacing and reservoir permeability on heat extraction in CO2 plume geothermal system: a case study of Songliao Basin[J]. Geological Science and Technology Information, 2015, 34(2): 188-193. | |
31 | 杨艳林, 靖晶, 王福刚, 等. CO2增强型地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, (7): 1130-1137. |
YangY L, JingJ, WangF G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, (7):1130-1137. | |
32 | 张俊虎, 刘君. 煤层气井网布置优化设计的探讨[J]. 科技情报开发与经济, 2008, (10):210-212. |
ZhangJ H, LiuJ. Probe into the optimal design of coal-bed methane well network[J]. Sci-tech Information Development & Economy, 2008, (10):210-212. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||