化工学报 ›› 2019, Vol. 70 ›› Issue (1): 280-289.DOI: 10.11949/j.issn.0438-1157.20180603
收稿日期:
2018-06-01
修回日期:
2018-11-05
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘会娥
作者简介:
刘会娥(1972—),女,博士,教授,<email>liuhuie@upc.edu.cn</email>
基金资助:
Hui e LIU(),Yangfan HUANG,Yanbing MA,Shuang CHEN
Received:
2018-06-01
Revised:
2018-11-05
Online:
2019-01-05
Published:
2019-01-05
Contact:
Hui e LIU
摘要:
以Pickering乳液法进行了石墨烯基气凝胶(GA)的制备,并以纯有机物和水中乳化油分为吸附对象,对其饱和吸附能力进行了评价,综合对比了不同研究者利用碳纳米材料所制备碳基气凝胶对纯有机化合物的吸附能力,发现包含本文所制备的GA在内的各种碳基气凝胶对不同的有机物的吸附能力与有机物的密度成正比,表明单位质量碳基气凝胶吸附有机物的体积(cm3?g?1)为定值,与具体的被吸附有机物的种类无关。推断有机物在气凝胶材料中的吸附是一种体积填充行为,气凝胶孔隙体积的大小对于其吸附有机物的能力具有重要影响,但孔隙的占有率也是决定实际吸附有机物能力的关键因素。所制备的GA对水中油分的吸附能力低于其对纯油分的吸附能力,应与水的竞争吸附、有机物的扩散阻力等有关。
中图分类号:
刘会娥, 黄扬帆, 马雁冰, 陈爽. 石墨烯基气凝胶对有机物的饱和吸附能力[J]. 化工学报, 2019, 70(1): 280-289.
Hui e LIU, Yangfan HUANG, Yanbing MA, Shuang CHEN. Saturated adsorption capacities of graphene aerogels on organics[J]. CIESC Journal, 2019, 70(1): 280-289.
No. | Aerogel type | Adsorbate | Adsorption capacity/(g·g?1) | Ref. |
---|---|---|---|---|
1 | hybrid foam of graphene and carbon nanotube | compressor oil | 85 | [9] |
sesam oil | 102 | |||
chloroform | 105 | |||
toluene | 130 | |||
DMF | 105 | |||
dichlorobenzene | 131 | |||
2 | graphene sponge | diesel oil | 129 | [10] |
vegetable oil | 96 | |||
chloroform | 154 | |||
ethylene glycol | 131 | |||
acetic ester | 93 | |||
ethanol | 79 | |||
n-heptane | 76 | |||
3 | ultra-flyweight aerogel | crude oil | 289 | [11] |
motor oil | 341 | |||
vegetable oil | 418 | |||
ethanol | 350 | |||
n-hexane | 215 | |||
toluene | 350 | |||
1,4-dioxane | 489 | |||
1-butyl-3-methylimidazolium tetrafluoroborate | 527 | |||
chloroform | 568 | |||
phenixin | 743 | |||
4 | graphene aerogel | n-hexane | 120 | [17] |
n-dodecane | 140 | |||
ethanol | 143 | |||
turpentine oil | 162 | |||
tributyl phosphate | 170 | |||
N-mehtyl pyrrolidone | 173 | |||
ethylene glycol | 182 | |||
dichloromethane | 196 | |||
carbon tetrachloride | 250 | |||
5 | graphene aerogel | n-hexane | 138 | [18] |
n-heptane | 142 | |||
vegetable oil | 193 | |||
pump oil | 187 | |||
white oil | 193 | |||
acetone | 161 | |||
ethanol | 158 | |||
6 | graphene sponge | petroleum ether | 510 | [19] |
acetone | 710 | |||
ethanol | 660 | |||
toluene | 720 | |||
pump oil | 1010 | |||
N-methyl pyrolidone | 755 | |||
7 | graphene/nanofiber aerogel | phenixin | 735 | [20] |
chloroform | 642 | |||
dichloroethane | 515 | |||
dioxane | 471 | |||
olive oil | 390 | |||
pump oil | 381 | |||
toluene | 377 | |||
p-xylene | 355 | |||
ethanol | 312 | |||
n-hexane | 230 | |||
8 | graphene aerogel | n-heptane | 122 | this work |
cyclohexane | 138 | |||
methylbenzene | 150 | |||
N,N-dimethylformamide | 164 | |||
dibutyl phthalate | 170 | |||
propanetriol | 194 | |||
phenixin | 237 | |||
aviation kerosene | 140 |
表1 不同气凝胶对有机物的饱和吸附能力
Table 1 Saturated adsorption capacities of carbon aerogels
No. | Aerogel type | Adsorbate | Adsorption capacity/(g·g?1) | Ref. |
---|---|---|---|---|
1 | hybrid foam of graphene and carbon nanotube | compressor oil | 85 | [9] |
sesam oil | 102 | |||
chloroform | 105 | |||
toluene | 130 | |||
DMF | 105 | |||
dichlorobenzene | 131 | |||
2 | graphene sponge | diesel oil | 129 | [10] |
vegetable oil | 96 | |||
chloroform | 154 | |||
ethylene glycol | 131 | |||
acetic ester | 93 | |||
ethanol | 79 | |||
n-heptane | 76 | |||
3 | ultra-flyweight aerogel | crude oil | 289 | [11] |
motor oil | 341 | |||
vegetable oil | 418 | |||
ethanol | 350 | |||
n-hexane | 215 | |||
toluene | 350 | |||
1,4-dioxane | 489 | |||
1-butyl-3-methylimidazolium tetrafluoroborate | 527 | |||
chloroform | 568 | |||
phenixin | 743 | |||
4 | graphene aerogel | n-hexane | 120 | [17] |
n-dodecane | 140 | |||
ethanol | 143 | |||
turpentine oil | 162 | |||
tributyl phosphate | 170 | |||
N-mehtyl pyrrolidone | 173 | |||
ethylene glycol | 182 | |||
dichloromethane | 196 | |||
carbon tetrachloride | 250 | |||
5 | graphene aerogel | n-hexane | 138 | [18] |
n-heptane | 142 | |||
vegetable oil | 193 | |||
pump oil | 187 | |||
white oil | 193 | |||
acetone | 161 | |||
ethanol | 158 | |||
6 | graphene sponge | petroleum ether | 510 | [19] |
acetone | 710 | |||
ethanol | 660 | |||
toluene | 720 | |||
pump oil | 1010 | |||
N-methyl pyrolidone | 755 | |||
7 | graphene/nanofiber aerogel | phenixin | 735 | [20] |
chloroform | 642 | |||
dichloroethane | 515 | |||
dioxane | 471 | |||
olive oil | 390 | |||
pump oil | 381 | |||
toluene | 377 | |||
p-xylene | 355 | |||
ethanol | 312 | |||
n-hexane | 230 | |||
8 | graphene aerogel | n-heptane | 122 | this work |
cyclohexane | 138 | |||
methylbenzene | 150 | |||
N,N-dimethylformamide | 164 | |||
dibutyl phthalate | 170 | |||
propanetriol | 194 | |||
phenixin | 237 | |||
aviation kerosene | 140 |
No. | Type of aerogel | Slope/ (cm3·g?1) | R 2 | Pore volume/(cm3·g?1) | Pore occupancy/% | Ref. |
---|---|---|---|---|---|---|
M1 | hybrid foam of graphene and carbon nanotube | 98.57 | 0.9346 | 144.05 | 68.43 | [9] |
M2 | ultra-flyweight aerogel | 423.37 | 0.9877 | 713.83 | 59.31 | [11] |
M3 | graphene aerogel | 147.28 | 0.9958 | 321.92 | 45.75 | [12]① |
M4 | graphene aerogel | 166.20 | 0.9940 | 166.00 | 100.12 | [17] |
M5 | graphene aerogel | 209.5 | 0.9992 | 237.64 | 88.15 | [18] |
M6 | graphene sponge | 759.57 | 0.9861 | 999.55 | 75.99 | [19] |
M7 | graphene / nanofiber aerogel | 432.4 | 0.9961 | 555.10 | 77.90 | [20] |
M8 | graphene nanoribbon aerogel-1 | 44.67 | 0.9734 | 45.00 | 99.27 | [21] |
M9 | graphene nanoribbon aerogel-2 | 111.91 | 0.9968 | 132.88 | 84.22 | [21] |
M10 | polydimethylsiloxane modified graphene nanoribbon aerogels | 196.78 | 0.9969 | 399.55 | 49.25 | [21] |
M11 | graphene - carbon nanotube composite aerogel | 87.01 | 0.9984 | 103.28 | 84.25 | [22] |
M12 | carbon nanofiber aerogel | 185.76 | 0.9880 | 199.56 | 93.08 | [24] |
M13 | nitrogen-doped graphene aerogel | 117.45 | 0.9844 | 199.55 | 58.86 | [23] |
M14 | reduced graphene coated polyamides sponge | 106.75 | 0.9919 | 113.20 | 94.30 | [25] |
M15 | graphene oxide coated polyurethane sponge | 92.94 | 0.9941 | 110.66 | 83.99 | [25] |
M16 | carbon nanotube / graphene hybrid aerogel | 138.50 | 0.9831 | — | — | [26] |
M17 | N-doped graphene aerogel | 71.39 | 0.9758 | 85.01 | 83.96 | [27] |
M18 | graphene foam | 24.77 | 0.9192 | — | — | [28] |
M19 | carbon fiber aerogel | 79.27 | 0.9863 | 82.88 | 95.64 | [29]① |
M20 | graphene-carbon nanotube aerogel | 37.82 | 0.9989 | — | — | [30] |
M21 | graphene aerogel | 160.57 | 0.9943 | 169.61 | 94.67 | this work |
表2 不同研究者所得各种碳基气凝胶吸附能力数据的拟合结果
Table 2 Fitting results of adsorption capacities from different researchers
No. | Type of aerogel | Slope/ (cm3·g?1) | R 2 | Pore volume/(cm3·g?1) | Pore occupancy/% | Ref. |
---|---|---|---|---|---|---|
M1 | hybrid foam of graphene and carbon nanotube | 98.57 | 0.9346 | 144.05 | 68.43 | [9] |
M2 | ultra-flyweight aerogel | 423.37 | 0.9877 | 713.83 | 59.31 | [11] |
M3 | graphene aerogel | 147.28 | 0.9958 | 321.92 | 45.75 | [12]① |
M4 | graphene aerogel | 166.20 | 0.9940 | 166.00 | 100.12 | [17] |
M5 | graphene aerogel | 209.5 | 0.9992 | 237.64 | 88.15 | [18] |
M6 | graphene sponge | 759.57 | 0.9861 | 999.55 | 75.99 | [19] |
M7 | graphene / nanofiber aerogel | 432.4 | 0.9961 | 555.10 | 77.90 | [20] |
M8 | graphene nanoribbon aerogel-1 | 44.67 | 0.9734 | 45.00 | 99.27 | [21] |
M9 | graphene nanoribbon aerogel-2 | 111.91 | 0.9968 | 132.88 | 84.22 | [21] |
M10 | polydimethylsiloxane modified graphene nanoribbon aerogels | 196.78 | 0.9969 | 399.55 | 49.25 | [21] |
M11 | graphene - carbon nanotube composite aerogel | 87.01 | 0.9984 | 103.28 | 84.25 | [22] |
M12 | carbon nanofiber aerogel | 185.76 | 0.9880 | 199.56 | 93.08 | [24] |
M13 | nitrogen-doped graphene aerogel | 117.45 | 0.9844 | 199.55 | 58.86 | [23] |
M14 | reduced graphene coated polyamides sponge | 106.75 | 0.9919 | 113.20 | 94.30 | [25] |
M15 | graphene oxide coated polyurethane sponge | 92.94 | 0.9941 | 110.66 | 83.99 | [25] |
M16 | carbon nanotube / graphene hybrid aerogel | 138.50 | 0.9831 | — | — | [26] |
M17 | N-doped graphene aerogel | 71.39 | 0.9758 | 85.01 | 83.96 | [27] |
M18 | graphene foam | 24.77 | 0.9192 | — | — | [28] |
M19 | carbon fiber aerogel | 79.27 | 0.9863 | 82.88 | 95.64 | [29]① |
M20 | graphene-carbon nanotube aerogel | 37.82 | 0.9989 | — | — | [30] |
M21 | graphene aerogel | 160.57 | 0.9943 | 169.61 | 94.67 | this work |
1 | Ge J , Zhao H , Zhu H , et al . Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Adv. Mater., 2016, 28(47):10459. |
2 | Das R , Hamid S B A , Ali M E , et al . Multifunctional carbon nanotubes in water treatment: the present, past and future[J]. Desalination, 2014, 354: 160-179. |
3 | 石效卷, 李璐, 张涛 . 水十条, 水实条——对《水污染防治行动计划》的解读[J]. 环境保护科学, 2015, 41(3): 1-3. |
Shi X J , Li L , Zhang T . Water pollution control action plan, a realistic and pragmatic plan—an interpretation of water pollution control action plan[J]. Environmental Protection Science, 2015, 41(3): 1-3. | |
4 | 陈超, 刘杨, 林鹏飞, 等 . 新《水污染防治法》在保障供水安全方面的法制化建设成果[J].中国给水排水,2017, 33(20): 11-19 |
Chen C , Liu Y , Lin P F , et al . Study on the legislation achievement on water supply by the recently amended water pollution prevention and control law of China[J]. China Water & Wastewater, 2017, 33(20): 11-19. | |
5 | 张文 . 油田污水处理技术现状及发展趋势[J]. 油气地质与采收率, 2010, 17(2): 108-110. |
Zhang W . Status and progress of oil-bearing wastewater treatment processes in oilfield[J]. PGRE, 2010, 17(2): 108-110. | |
6 | Kemp K C , Seema H , Saleh M , et al . Environmental applications using graphene composites: water remediation and gas adsorption[J]. Nanoscale, 2013, 5: 3149–3171. |
7 | Stankovich S , Dikin D A , Piner R D , et al . Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45: 1558-1565. |
8 | 孙怡然, 杨明轩, 于飞,等 . 石墨烯气凝胶吸附剂的制备及其在水处理中的应用[J]. 化学进展, 2015, 27(8): 1133-1146. |
Sun Y R , Yang M X , Yu F , et al . Synthesis of graphene aerogel adsorbents and their applications in water treatment[J]. Progress in Chemistry, 2015, 27(8): 1133-1146. | |
9 | Dong X , Chen J , Ma Y , et al . Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chem. Commun., 2012, 48: 10660-10662. |
10 | Zhao J , Ren W , Cheng H . Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. J. Mater. Chem., 2012, 22: 20197-20202. |
11 | Sun H , Xu Z , Gao C . Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv. Mater., 2013, 25: 2554-2560. |
12 | Huang J , Liu H , Chen S , et al . Graphene aerogel prepared through double hydrothermal reduction as high performance oil adsorbent[J]. Materials Science & Engineering B, 2017, 226: 141-150. |
13 | Cote L J , Kim F , Huang J . Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043-1049. |
14 | Xu L M , Xiao G Y , Chen C B , et al . Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3(14): 7498-7504. |
15 | Chen J , Chi F Y , Huang L , et al . Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes[J]. Carbon, 2016, 110: 34-40. |
16 | Shin H J , Kim K K , Benayad A , et al . Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12): 1987-1992. |
17 | Li J , Li J , Meng H , et al . Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. |
Mater J. . Chem. A, 2014, 2, 2934-2941. | |
18 | Liu T , Huang M , Li X , et al . Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016, 100: 456-464. |
19 | Wu Y , Yi N , Huang L , et al . Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature Communications, 2015, 6: 6141. |
20 | Xiao J , Lv W , Song Y , et al . Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 338: 202-210. |
21 | Chen L , Du R , Zhang J , et al . Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels[J]. |
Mater J. . Chem. A, 2015, 3: 20547-20553. | |
22 | 马雁冰, 刘会娥, 陈爽, 等 . 碳纳米管-石墨烯气凝胶制备及其对水中乳化油的吸附特性[J]. 化工学报, 2018, 69 (4): 1508-1517. |
Ma Y B , Liu H E , Chen S , et al . Facial synthesis of carbon nanotubes-graphene aerogels and its adsorption property for emulsified oil in water[J]. CIESC Journal, 2018, 69(4):1508-1517. | |
23 | Song X , Lin L , Rong M , et al . Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel[J]. Carbon, 2014, 80: 174-182. |
24 | Wu Z , Li C , Liang H , et al . Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angew. Chem., 2013, 125: 2997-3001. |
25 | Liu Y , Ma J , Wu T , et al . Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Appl. Mater. Interfaces, 2013, 5: 10018-10026. |
26 | Hu H , Zhao Z , Gogotsi Y , et al . Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environ. Sci. Technol. Lett. 2014, 1: 214-220. |
27 | Ren H , Shi X , Zhu J , et al . Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J]. J. Mater Sci., 2016, 51: 6419-6427. |
28 | Yang S , Chen L , Mu L , et al . Graphene foam with hierarchical structures for the removal of organic pollutants from water[J]. RSC Adv., 2016, 6 (6): 4889-4898. |
29 | Bi H , Yin Z , Cao X , et al . Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents[J]. Adv. Mater., 2013, 25: 5916-5921. |
30 | Kabiri S , Tran D N H , Altalhi T , et al . Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80: 523-533. |
31 | Bering B P , Dubinin M M , Serpinsky V V . Theory of volume filling for vapor adsorption[J]. Journal of Colloid and Interface Science, 1966, 21(4), 378-393. |
32 | Marzbali M H , Esmaieli M . Fixed bed adsorption of tetracycline on a mesoporous activated carbon: experimental study and neuro-fuzzy modeling[J]. Journal of Applied Research and Technology, 2017, 15: 454-463. |
33 | 叶振华, 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992: 123. |
Ye Z H . Chemical Adsorption Separation Process[M]. Beijing: Sinopec Press, 1992: 123. | |
34 | 黄扬帆, 刘会娥, 王振有, 等 . 软模板法石墨烯气凝胶的制备及其对水中油品的吸附机理[J]. 高校化学工程学报, 2018, 32(4): 940-948. |
Huang Y F , Liu H E , Wang Z Y , et al . Preparation of graphene aerogels with soft templates and their oil adsorption mechanism from water[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 940-948. | |
35 | Weber W J , Morris J C . Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963, 89(17): 31-59. |
36 | Bhattacharyya K G , Shama A . Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachtaindica) leaf powder[J]. Dyes & Pigments, 2005, 65(1): 51-59. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[7] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[15] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||