化工学报 ›› 2019, Vol. 70 ›› Issue (2): 508-515.DOI: 10.11949/j.issn.0438-1157.20181212
收稿日期:
2018-10-16
修回日期:
2018-10-30
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
都健
作者简介:
<named-content content-type="corresp-name">王少靖</named-content>(1994—),男,硕士研究生,<email>wsj9436@163.com</email>|都健(1964—),女,博士,教授,<email>dujian@dlut.edu.cn</email>
基金资助:
Shaojing WANG(),Linlin LIU,Lei ZHANG,Jian DU(),Kaiyi WU
Received:
2018-10-16
Revised:
2018-10-30
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jian DU
摘要:
为提高液化天然气能量集成与设备共用水平,提出了一种基于大型AP-XTM液化流程,综合气体过冷技术(GSP)的集成NGL(天然气凝液)回收工艺的天然气液化系统的概念设计。基于化工流程模拟软件Aspen HYSYS进行模拟和分析,将集成工艺多流股换热器性能、全流程的单位功耗和乙烷回收率作为衡量系统性能的三项指标。模拟和分析的结果表明,集成NGL回收的AP-XTM液化工艺单位功耗降低至0.45 kW·h·(kg LNG)-1,较单产系统能耗降低了6%,同时乙烷回收率达到93%,实现了NGL的高效分离。通过热力学分析、?分析和经济性分析得出本设计流程具有较高的性能和经济价值,可为天然气液化工艺的集成设计和技术改造提供指导借鉴。
中图分类号:
王少靖, 刘琳琳, 张磊, 都健, 吴恺艺. 集成NGL回收的新型天然气液化系统AP-XTM的概念设计与模拟分析[J]. 化工学报, 2019, 70(2): 508-515.
Shaojing WANG, Linlin LIU, Lei ZHANG, Jian DU, Kaiyi WU. Conceptual design, simulation and analysis of novel AP-XTM system integrated with NGL recovery process for large-scale LNG plant[J]. CIESC Journal, 2019, 70(2): 508-515.
组成 | 进料天然气 | 混合制冷剂 | 氮气膨胀剂 |
---|---|---|---|
CH4 | 86 | 26.7 | — |
C2H4 | — | 28.9 | — |
C2H6 | 7.5 | — | — |
C3H6 | 3.5 | 15.2 | — |
i-C4H10 | 1.5 | 14.4 | — |
n-C4H10 | 1.5 | — | — |
N2 | — | 14.8 | 100 |
表1 天然气及制冷剂组成
Table 1 Natural gas and refrigerant composition/%(mol)
组成 | 进料天然气 | 混合制冷剂 | 氮气膨胀剂 |
---|---|---|---|
CH4 | 86 | 26.7 | — |
C2H4 | — | 28.9 | — |
C2H6 | 7.5 | — | — |
C3H6 | 3.5 | 15.2 | — |
i-C4H10 | 1.5 | 14.4 | — |
n-C4H10 | 1.5 | — | — |
N2 | — | 14.8 | 100 |
流股名称 | 序号 | 摩尔流量/(kmol·h-1) | 压力/kPa | 温度/℃ | 塔板位置 |
---|---|---|---|---|---|
入口流股 | |||||
冷回流流股 | 108 | 17060 | 2480 | -7.8 | 1 |
膨胀气 | 109 | 22010 | 2500 | -70.7 | 6 |
冷凝液 | 114 | 2214 | 2500 | -54.7 | 14 |
冷凝冷液 | 113 | 3322 | 2500 | -65.1 | 9 |
回流流股 | side 1R | 2500 | 2524 | -35.0 | 30 |
回流流股 | side 2R | 2500 | 2518 | 0.00 | 27 |
出口流股 | |||||
回流流股 | side 3R | 2500 | 2503 | 0.00 | 21 |
塔顶贫气 | 115 | 37920 | 2467 | -97.9 | 1 |
塔底NGL | NGL | 6650 | 2533 | -5.0 | 30 |
侧线采出流股 | side 1 | 2500 | 2531 | -30.4 | 29 |
侧线采出流股 | side 2 | 2500 | 2525 | -57.0 | 26 |
侧线采出流股 | side 3 | 2500 | 2510 | -76.8 | 20 |
表2 脱甲烷塔模拟数据
Table 2 Typical demethanizer tower simulation data
流股名称 | 序号 | 摩尔流量/(kmol·h-1) | 压力/kPa | 温度/℃ | 塔板位置 |
---|---|---|---|---|---|
入口流股 | |||||
冷回流流股 | 108 | 17060 | 2480 | -7.8 | 1 |
膨胀气 | 109 | 22010 | 2500 | -70.7 | 6 |
冷凝液 | 114 | 2214 | 2500 | -54.7 | 14 |
冷凝冷液 | 113 | 3322 | 2500 | -65.1 | 9 |
回流流股 | side 1R | 2500 | 2524 | -35.0 | 30 |
回流流股 | side 2R | 2500 | 2518 | 0.00 | 27 |
出口流股 | |||||
回流流股 | side 3R | 2500 | 2503 | 0.00 | 21 |
塔顶贫气 | 115 | 37920 | 2467 | -97.9 | 1 |
塔底NGL | NGL | 6650 | 2533 | -5.0 | 30 |
侧线采出流股 | side 1 | 2500 | 2531 | -30.4 | 29 |
侧线采出流股 | side 2 | 2500 | 2525 | -57.0 | 26 |
侧线采出流股 | side 3 | 2500 | 2510 | -76.8 | 20 |
工况参数 | 115 | NGL | Fuel |
---|---|---|---|
温度/℃ | -98.0 | -4.9 | -103 |
压力/kPa | 2467 | 2533 | 97 |
摩尔流率/(kmol·h-1) | 37920 | 6650 | 2400 |
摩尔组成/% | |||
甲烷 | 99.4 | 10.4 | 100 |
乙烷 | 0.6 | 52.9 | 0 |
丙烷 | 0 | 23.3 | 0 |
正丁烷 | 0 | 6.7 | 0 |
异丁烷 | 0 | 6.7 | 0 |
表3 关键流股数据
Table 3 Data of key stream
工况参数 | 115 | NGL | Fuel |
---|---|---|---|
温度/℃ | -98.0 | -4.9 | -103 |
压力/kPa | 2467 | 2533 | 97 |
摩尔流率/(kmol·h-1) | 37920 | 6650 | 2400 |
摩尔组成/% | |||
甲烷 | 99.4 | 10.4 | 100 |
乙烷 | 0.6 | 52.9 | 0 |
丙烷 | 0 | 23.3 | 0 |
正丁烷 | 0 | 6.7 | 0 |
异丁烷 | 0 | 6.7 | 0 |
模拟计算结果 | AP-X | NGL | AP-X+NGL |
---|---|---|---|
装置总能耗/kW | 484372 | 48924 | 501012 |
膨胀机总产功/kW | 113100 | 4920 | 118020 |
单位能耗ω/( kW·h·(kg LNG)-1) | 0.436 | 0.044 | 0.45 |
乙烷回收率η/% | — | 80+ | 93 |
表4 模拟结果与单产工艺比较
Table 4 Simulation results and comparison with independent process
模拟计算结果 | AP-X | NGL | AP-X+NGL |
---|---|---|---|
装置总能耗/kW | 484372 | 48924 | 501012 |
膨胀机总产功/kW | 113100 | 4920 | 118020 |
单位能耗ω/( kW·h·(kg LNG)-1) | 0.436 | 0.044 | 0.45 |
乙烷回收率η/% | — | 80+ | 93 |
换热器 | LMTD/℃ | 最小传热温差/℃ |
---|---|---|
E-1A | 12.8 | 2.3 |
E-1B | 16.8 | 4.2 |
E-2 | 4.9 | 3.9 |
E-3 | 15.4 | 2.4 |
E-4 | 22.6 | 3.0 |
E-5 | 14.2 | 3.9 |
表5 多流股换热器的对数传热温差和最小传热温差
Table 5 LMTD and minimum temperature approach of multi-stream heat exchangers
换热器 | LMTD/℃ | 最小传热温差/℃ |
---|---|---|
E-1A | 12.8 | 2.3 |
E-1B | 16.8 | 4.2 |
E-2 | 4.9 | 3.9 |
E-3 | 15.4 | 2.4 |
E-4 | 22.6 | 3.0 |
E-5 | 14.2 | 3.9 |
1 | 吴勇军, 陈洋洋. 国际LNG市场分析及我国LNG产业发展建议[J]. 当代石油石化, 2014, 6(10): 26-35. |
WuY J, ChenY Y. Analysis of international LNG market and suggestions for China s LNG industry development[J]. Contemporary Petroleum & Petrochemicals, 2014, 6(10): 26-35. | |
2 | JohnsonG L, FinnA J, TomlinsonT R. Offshore and smaller scale liquefiers[J]. LNG Journal, 1999, 2(5): 19-22. |
3 | ChiuC H, QuillenL D, GasC G. A new frontier offshore natural gas liquefaction[R]. Bangkok: Chevro Energy Technology Company and Chevron Global Gas, 2008. |
4 | HeT B, JuY L. Performance improvement of nitrogen expansion liquefaction process for small-scale LNG plant[J]. Cryogenics, 2014, 61(11): 111-119. |
5 | 顾安忠. 液化天然气技术[M]. 北京: 机械工业出版社, 2009: 116-117. |
GuA Z. LNG Technology [M]. Beijing: Mechanical Industry Press, 2009: 116-117. | |
6 | 王乐, 贾立民, 付孟贵, 等. 天然气脱水系统的技术改造[J]. 天然气工业, 2005, 25(8): 123-124. |
WangL, JiaL M, FuM G, et al. Technical transformation of natural gas dehydration system[J]. Natural Gas Industry, 2005, 25(8): 123-124. | |
7 | LimW, ChoiK, MoonI. Current status and perspectives of liquefied natural gas (LNG) plant design[J]. Ind. Eng. Chem. Res. , 2012, 52(9): 3065-3088. |
8 | 邱鹏, 杨家茂, 邹凌川, 等. GSP工艺回收天然气中C2+组分的模拟研究[J]. 工程技术, 2017, 15(8): 1-3. |
QiuP, YangJ M, ZouL C, et al. Study on the recovery of C2+ components in natural gas by GSP process[J]. Engineering Technology, 2017, 15(8): 1-3. | |
9 | 唐晓东, 诸林, 杨世, 等. 提高油气田轻烃回收率的途径探讨[J]. 石油与天然气化工, 1999, 28(4): 272-276. |
TangX D, ZhuL, YangS, et al. Discussion on ways to improve the recovery rate of light hydrocarbons in oil and gas fields[J]. Petroleum and Natural Gas Chemical Industry, 1999, 28(4): 272-276. | |
10 | 钟水清. 我国21世纪天然气商机研究及其展望[J]. 钻采工艺, 2007, 30(5): 93-98. |
ZhongS Q. China s 21st century natural gas business research and its prospects[J]. Drilling and Production Technology, 2007, 30(5): 93-98. | |
11 | Ait-AliM. Optimal mixed refrigerant liquefaction of natural gas[D]. California: Stanford University, 1979. |
12 | MesfinG, ShuhaimiM, NguyenV, et al. Techno-economic analysis of potential natural gas liquid (NGL) recovery processes under variations of feed compositions[J]. Chemical Engineering Research and Design, 2013, 91(7): 1272-1283. |
13 | BrostowA, RobertsM. Integrated NGL recovery in the production of liquefied natural gas: US20130061632[P]. 2013-06-16. |
14 | CuellarK T. Co-producing LNG from cryogenic NGL recovery plants[C]// 81st Annual Convention of the Gas Processors Association. Beijing: 2002. |
15 | 贺天彪, 巨永林. 小型撬装式天然气液化流程模拟与分析[J]. 低温技术, 2013, 41(5): 1001-7100. |
HeT B, JuY L. Simulation and analysis of small-scale skid-mounted natural gas liquefaction process[J]. Cryogenic Technology, 2013, 41(5): 1001-7100 | |
16 | HojatA, MehdiM. Evaluation of novel process configurations for coproduction of LNG and NGL using advanced exergoeconomic analysis[J]. Applied Thermal Engineering, 2017, 115(13): 885-898. |
17 | 孙兰义. 化工流程模拟实训——Aspen Plus教程[M]. 北京: 化学工业出版社, 2012: 163. |
SunL Y. Chemical Process Simulation Training — Aspen Plus Course [M]. Beijing: Chemical Industry Press, 2012: 163. | |
18 | 王坤. 小型MRC天然气液化装置板翅换热器动态特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
WangK. Simulation study on dynamic characteristics of plate-fin heat exchanger for small MRC natural gas liquefaction plant[D]. Harbin: Harbin Institute of Technology, 2007. | |
19 | 尹全森. 混合制冷剂循环优化设计和动态特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
YinQ S. Research on optimization design and dynamic characteristics of mixed refrigerant cycle [D]. Harbin: Harbin Institute of Technology, 2010. | |
20 | 李奇, 姬忠礼, 段西欢, 等. 基于HYSYS和GA的天然气净化装置用能优化[J]. 天然气工业, 2011, 31(9): 102-106. |
LiQ, JiZ L, DuanX H, et al. Energy optimization of natural gas purification equipment based on HYSYS and GA[J]. Natural Gas Industry, 2011, 31(9): 102-106. | |
21 | DuH P, CuiJ S, LiH Y, et al. The simulation and optimization analyses of process based on natural gas liquefaction at sea[J]. Energy Conversion Technology, 2011, 29(3): 195-197. |
22 | GaoT, LinW S, LiuW, et al. Mixed refrigerant cycle liquefaction process for coalbed methane with high nitrogen content[J]. Journal of the Energy Institute, 2011, 84(4): 185-191. |
23 | 唐迎春, 陈保东, 王凯, 等. P-R方程在天然气热物性计算中的应用[J]. 石油化工高等学校学报, 2005, 18(2): 47-50. |
TangY C, ChenB D, WangK, et al. The application of P-R equation in the calculation of natural gas thermal properties[J]. Journal of Petrochemical Universities, 2005, 18(2): 47-50. | |
24 | MehrpooyaM, VataniA, MoosavianS, et al. Introducing a new parameter for evaluating the degree of integration in cryogenic liquid recovery processes[J]. Chem. Eng. Process, 2011, 50(15): 916-930. |
25 | MichelsenF A, HalvorsenI J, LundB F, et al. Modeling and simulation for control of the TEALARC liquified natural gas process[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7389-7397. |
26 | HusnilY A, LeeM. Control structure synthesis for operational optimization of mixed refrigerant processes for liquefied natural gas plant[J]. AIChE Journal, 2014, 60(7): 2428-2441. |
27 | HusnilY A, YeoG C, LeeM. Plant-wide control for the economic operation of modified single mixed refrigerant process for an offshore natural gas liquefaction plant[J]. Chemical Engineering Research and Design, 2014, 92(4): 679-691. |
28 | 高婷. 含氮煤层气二氧化碳净化指标与液化提纯流程研究[D]. 上海: 上海交通大学, 2012. |
GaoT. Study on carbon dioxide purification index and liquefaction purification process of nitrogen-bearing coalbed methane [D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
29 | 韩光泽, 郭平生, 李绍新, 等. 热力学㶲及其普遍化表达式的动力学特征[J]. 热能动力工程, 2007, 22(4): 409-413. |
HanG Z, GuoP S, LiS X, et al. Kinetic characteristics of thermodynamics and its generalized expression [J]. Thermal Power Engineering, 2007, 22(4): 409-413. | |
30 | 李亚芬. 过程控制系统及仪表[M]. 大连: 大连理工大学出版社, 2010: 321. |
LiY F. Process Control System and Instrument[M]. Dalian: Dalian University of Technology Press, 2010: 321. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||