化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1522-1531.DOI: 10.11949/j.issn.0438-1157.20181218
冯炜(),高红凤,王贵,吴浪浪,许靖钦,李壮楣,李平,白红存(),郭庆杰
收稿日期:
2018-10-17
修回日期:
2018-12-11
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
白红存
作者简介:
<named-content content-type="corresp-name">冯炜</named-content>(1994—),女,硕士研究生,<email>1812939016@qq.com</email>|白红存(1985—),男,博士,副研究员,<email>hongcunbai@nxu.edu.cn</email>;<email>hongcunbai@gmail.com</email>
基金资助:
Wei FENG(),Hongfeng GAO,Gui WANG,Langlang WU,Jingqin XU,Zhuangmei LI,Ping LI,Hongcun BAI(),Qingjie GUO
Received:
2018-10-17
Revised:
2018-12-11
Online:
2019-04-05
Published:
2019-04-05
Contact:
Hongcun BAI
摘要:
以宁东枣泉煤为研究对象,使用工业分析、元素分析、X射线光电子能谱、13C固体核磁等表征手段和计算机辅助,构建获得枣泉煤大分子结构模型。经过分子动力学退火动力学模拟和几何结构全优化,与初始结构相比键长、键角发生明显改变,立体构型显著,芳香层片之间近似平行的排列方式明显。获得的傅里叶变换红外和13C固体核磁的实验与计算谱图总体吻合较好,进一步证明了构建模型的合理性。使用反应分子动力学方法模拟枣泉煤的热解过程,考察不同热解终温和升温速率对热解行为的影响。结果发现,随着温度的升高,反应速率逐渐加快。不同升温速率对枣泉煤热解过程中气体的产生有显著影响。在动力学模拟中大多产生C15以下的碎片,大分子的种类则并不多。随着升温速率的增加,气、液、固三相产物整体上都呈现下降的趋势。此外,还根据反应分子动力学模拟结果追踪了热解过程中CO2的形成机理,获得了三种不同的CO2形成路径。
中图分类号:
冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Wei FENG, Hongfeng GAO, Gui WANG, Langlang WU, Jingqin XU, Zhuangmei LI, Ping LI, Hongcun BAI, Qingjie GUO. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531.
Proximate analysis/% | Ultimate analysis/% | Content/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | Vitrinite | Exinite | Inertinite |
6.58 | 2.24 | 25.49 | 72.81 | 3.85 | 20.31 | 0.83 | 0.35 | 29.00 | 0.00 | 71.00 |
表1 煤样物化性质参数
Table 1 Physicochemical properties of coal sample
Proximate analysis/% | Ultimate analysis/% | Content/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | Vitrinite | Exinite | Inertinite |
6.58 | 2.24 | 25.49 | 72.81 | 3.85 | 20.31 | 0.83 | 0.35 | 29.00 | 0.00 | 71.00 |
H/C | O/C | N/C | S/C |
---|---|---|---|
0.63 | 0.21 | 0.01 | 0.00 |
表2 煤样原子比
Table 2 Atomic ratio of coal sample
H/C | O/C | N/C | S/C |
---|---|---|---|
0.63 | 0.21 | 0.01 | 0.00 |
Sample | fa | fa C | fa ' | fa N | fa H | fa P | fa S | fa B | fal | fal * | fal H | fal O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ | 73.84% | 3.37% | 70.47% | 29.75% | 40.72% | 7.73% | 6.48% | 15.54% | 26.16% | 10.44% | 9.98% | 5.74% |
表3 煤样的结构参数百分比
Table 3 Percentage of structural parameters of coal sample
Sample | fa | fa C | fa ' | fa N | fa H | fa P | fa S | fa B | fal | fal * | fal H | fal O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ | 73.84% | 3.37% | 70.47% | 29.75% | 40.72% | 7.73% | 6.48% | 15.54% | 26.16% | 10.44% | 9.98% | 5.74% |
Elemental peak | Functionality | Binding energy/eV | Molar content/% |
---|---|---|---|
C 1s | C—C, C—H | 284.43 | 38.14 |
C—O | 285.67 | 36.50 | |
C | 286.79 | 18.97 | |
COO— | 289.75 | 6.39 | |
O 1s | inorg oxygen | 530.58 | 2.93 |
C | 531.84 | 24.07 | |
C—O - | 533.06 | 58.84 | |
COO - | 534.60 | 9.75 | |
adsorbed oxygen | 536.04 | 4.41 | |
N 1s | pyridinic nitrogen | 399.10 | 23.00 |
pyrrolic nitrogen | 400.37 | 39.12 | |
quatemary nitrogen | 401.48 | 24.72 | |
oxidized nitrogen | 403.32 | 13.16 |
表4 煤样的 C 1s、O 1s、N 1s XPS 数据
Table 4 XPS C 1s,O 1s,N 1s data of coal sample
Elemental peak | Functionality | Binding energy/eV | Molar content/% |
---|---|---|---|
C 1s | C—C, C—H | 284.43 | 38.14 |
C—O | 285.67 | 36.50 | |
C | 286.79 | 18.97 | |
COO— | 289.75 | 6.39 | |
O 1s | inorg oxygen | 530.58 | 2.93 |
C | 531.84 | 24.07 | |
C—O - | 533.06 | 58.84 | |
COO - | 534.60 | 9.75 | |
adsorbed oxygen | 536.04 | 4.41 | |
N 1s | pyridinic nitrogen | 399.10 | 23.00 |
pyrrolic nitrogen | 400.37 | 39.12 | |
quatemary nitrogen | 401.48 | 24.72 | |
oxidized nitrogen | 403.32 | 13.16 |
Path | Formation reaction |
---|---|
1 | |
2 | |
3 | |
表5 煤热解模拟过程中CO2的生成机理
Table 5 Formation mechanism of CO2 in coal pyrolysis simulation
Path | Formation reaction |
---|---|
1 | |
2 | |
3 | |
1 | Lei Z , Yang D , Zhang Y H , et al . Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry & Technology, 2017, 45(7): 769-779. |
2 | Xie K C . Structure and Reactivity of Coal [M]. New York: Springer-Verlag Press, 2015: 1-27. |
3 | Mathews J P , Chaffee A L . The molecular representations of coal— a review[J]. Fuel, 2012, 96(7): 1-14. |
4 | Carlson G A . Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771-778. |
5 | Zhang Z , Kang Q , Wei S , et al . Large scale molecular model construction of Xishan bituminous coal[J]. Energy & Fuels, 2017, 31: 1310-1317. |
6 | Mathews J P , Sharma A . The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95(1): 19-24. |
7 | 相建华, 曾凡桂, 李彬, 等 . 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报, 2013, 41(4): 391-399. |
Xiang J H, Zeng F G, Li B, et al Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Chemistry and Technology, 2013, 41(4): 391-399. | |
8 | Behar F , Hatcher P G . Artificial coalification of a fossil wood from brown coal by confined system pyrolysis[J]. Fuel & Energy Abstracts, 1996, 37(3): 984-994. |
9 | Salmon E , van Duin Act, Lorant F , et al . Early maturation processes in coal (2): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
10 | Heek K H V , Hodek W . Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896. |
11 | Mushtaq F , Mat R , Ani F N . A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable & Sustainable Energy Reviews, 2014, 39(6): 555-574. |
12 | Abdelsayed V , Shekhawat D , Smith M W , et al . Microwave-assisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis[J]. Fuel, 2018, 217: 656-667. |
13 | Gao S , Zhai L , Qin Y , et al . Investigation into the cleavage of chemical bonds induced by CO2 and its mechanism during the pressurized pyrolysis of coal[J]. Energy & Fuels, 2018, 32(3): 3243-3253. |
14 | 陈兆辉, 高士秋, 许光文 . 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
Chen Z H , Gao S Q , Xu G W . Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
15 | van Duin Act, Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
16 | Salmon E , van Duin Act, Lorant F , et al . Thermal decomposition process in algaenan of Botryococcus braunii race L. (2): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427. |
17 | Wang H , Feng Y , Zhang X , et al . Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145: 241-248. |
18 | Wang J P , Li G Y , Guo R , et al . Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2016, 31(1): 124-132. |
19 | Zhan J H , Wu R , Liu X , et al . Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134(9): 283-292. |
20 | Hong D , Guo X . Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
21 | Li W , Zhu Y , Chen S , et al . Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652. |
22 | 朱学栋, 朱子彬, 韩崇家, 等 . 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999, (4): 335-339. |
Zhu X D , Zhu Z B , Han C J , et al . Quantitative determination of oxygen containing functional groups in coal by FTIR spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1999, (4): 335-339. | |
23 | Hayashi J , Takahashi H , Doi S , et al . Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy & Fuels, 2000, 14(2): 400-408. |
24 | Yan G C , Zhang Z Q , Yan K F . Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2012, 111(1): 147-156. |
25 | Chen B , Diao Z J , Zhao Y L , et al . A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds[J]. Fuel, 2015, 154(5): 114-122. |
26 | Bhoi S , Banerjee T , Mohanty K . Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6): 326-333. |
27 | Zhou Z , Guo L , Chen L , et al . Study of pyrolysis of brown coal and gasification of coal-water slurry using the ReaxFF reactive force field[J]. International Journal of Energy Research, 2018, 42(7): 2465-2480. |
28 | 刘振宇 . 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438. |
Liu Z Y . Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1438. | |
29 | 张小盟, 李宁煜, 高文青 . 宁夏煤炭利用效率的影响因素分析[J]. 煤炭加工与综合利用, 2017, (3): 59-65. |
Zhang X M , Li N Y , Gao W Q . Analysis on the factors affecting the utilization efficiency of coal in Ningxia[J]. Coal Processing and Comprehensive Utilization, 2017, (3): 59-65. | |
30 | 李壮楣, 王艳美, 李平, 等 . 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
Li Z M , Wang Y M , Li P , et al . Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216. | |
31 | Zhao Y , Truhlar D G . The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120: 215-241. |
32 | Weismiller M R , van Duin Act, Lee J , et al . ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion[J]. Journal of Physical Chemistry A, 2010, 114: 5485-5492. |
33 | Zheng M , Li X , Liu J , et al . Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522–534. |
34 | 张莉 . 五牧场11号煤结构模型构建及其超分子特征[D]. 太原: 太原理工大学, 2013. |
Zhang L . Molecular structure model building and supermolecule characteristic of Wumuchang No.11 coal[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
35 | 马伦, 陆大荣, 梁汉东, 等 . 神华长焰煤大分子结构特征的研究[J]. 燃料化学学报, 2013, 41(5): 513-522. |
Ma L , Lu D R , Liang H D , et al . Preliminary study on macromolecular structure characteristics of Shenhua long flame coal[J]. Journal of Fuel Chemistry & Technology, 2013, 41(5): 513-522. | |
36 | Zheng M , Li X , Nie F , et al . Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675−3683. |
37 | Li W , Zhu Y M , Wang G , et al . Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis[J]. Journal of Molecular Modeling, 2015, 21(8): 188-200. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[14] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[15] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||