化工学报 ›› 2013, Vol. 64 ›› Issue (3): 834-840.doi: 10.3969/j.issn.0438-1157.2013.03.008

• 流体力学与传递现象 • 上一篇    下一篇

初始分布对气固提升管动力学模拟的影响

赵明朝1,2, 鲁波娜2, 王维2, 黄卫星1, 李静海2   

  1. 1. 四川大学化学工程学院,四川 成都 610065;
    2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
  • 收稿日期:2012-06-01 修回日期:2012-11-14 出版日期:2013-03-05 发布日期:2013-03-05
  • 通讯作者: 鲁波娜
  • 作者简介:赵明朝(1988—),男,硕士研究生。
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB215003);国家自然科学基金项目(21106157,21176240);中国科学院战略性先导科技专项(XDA07080102)。

Influence of initial distributions on hydrodynamic simulation of gas-solids riser

ZHAO Mingzhao1,2, LU Bona2, WANG Wei2, HUANG Weixing1, LI Jinghai2   

  1. 1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China;
    2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2012-06-01 Revised:2012-11-14 Published:2013-03-05 Online:2013-03-05
  • Supported by:

    supported by the National Basic Research Program of China(2012CB215003),the National Natural Science Foundation of China(21106157,21176240)and the "Strategic Priority Research Program" of Chinese Academy of Sciences(XDA07080102).

摘要: 近期研究表明,合理的初始分布能够大幅缩短气固提升管瞬态模拟从初始到达稳定状态所需的过渡时间。以此为基础,研究发现,若以时均统计的流场信息作为模拟的初始分布,则模拟能够很快达到稳定。然后,对影响过渡时间的各个时均流场参数(如压力、气固相速度、空隙率分布等)进行了敏感性分析,发现提升管的空隙率轴向分布是其中最为关键的因素。最后,利用EMMS(energy-minimization multi-scale)模型预测的空隙率轴向分布作为气固提升管动力学模拟的初始条件进行模拟,结果表明,计算很快能达到稳定,且预测的颗粒通量等参数与实验吻合较好。

关键词: 初始分布, 空隙率, 提升管, 模拟, EMMS

Abstract: Recent studies have shown that a reasonable initial distribution can significantly reduce the transition time from initialization to reaching steady state for simulation of a riser.In this work,a series of simulations were performed to study the relationship between initial conditions and simulation efficiency.The results indicated that statistically-averaged distribution could be an effective initial distribution.Then,all the flow parameters for defining this initial distribution(i.e.pressure,gas and solids velocities,voidage) were investigated respectively for sensitivity analysis.It was found that transition time could be reduced greatly if a good axial distribution of voidage was provided at the beginning of the simulation.This finding was confirmed further by a hydrodynamical simulation of gas-solids flow in a riser with EMMS(energy-minimization multi-scale) model,in which EMMS model was used to provide a reasonable axial voidage distribution as the initial condition.The relevant results,such as solids flux,were in good agreement with experimental data.

Key words: initial distribution, voidage, riser, simulation, EMMS

中图分类号: 

  • TQ021.1

[1] Tsuo Y P,Gidaspow D.Computation of flow patterns in circulating fluidized beds[J].AIChE Journal,1990,36(6):885-896
[2] van der Hoef M A,Annaland M V S,Deen N G,Kuipers J A M.Numerical simulation of dense gas-solid fluidized beds:a multiscale modeling strategy[J].Annual Review of Fluid Mechanics,2008,40:47-70
[3] Kawaguchi T,Tanaka T,Tsuji Y.Numerical simulation of two-dimensional fluidized beds using the discrete element method(comparison between the two- and three-dimensional models)[J].Powder Technology,1998,96(2):129-138
[4] Ouyang J,Li J H.Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization[J].Chemical Engineering Science,1999,54(22):5427-5440
[5] Tsuji Y,Tanaka T,Yonemura S.Cluster patterns in circulating fluidized beds predicted by numerical simulation(discrete particle model versus two-fluid model)[J].Powder Technology,1998,95(3):254-264
[6] Andrews A T,Loezos P N,Sundaresan S.Coarse-grid simulation of gas-particle flows in vertical risers[J].Industrial & Engineering Chemistry Research,2005,44(16):6022-6037
[7] Peng B,Zhang C,Zhu J.Theoretical and numerical studies on the flow multiplicity phenomenon for gas-solids two-phase flows in CFB risers[J].International Journal of Multiphase Flow,2011,37(6):660-670
[8] Zhang D Z,van der Heyden W B.High-resolution three-dimensional numerical simulation of a circulating fluidized bed[J].Powder Technology,2001,116(2/3):133-141
[9] Liu Yaning(刘雅宁).EMMS-based simulation of gas-solid flow .Beijing:Chinese Academy of Sciences,2010
[10] Milioli C,Milioli F.Reaching the statistical steady state regime in two-fluid simulation of risers[J].Powder Technology,2006,167(1):26-32
[11] Liu Y N,Chen J H,Ge W,Wang J W,Wang W. Acceleration of CFD simulation of gas-solid flow by coupling macro-/meso-scale EMMS model[J].Powder Technology,2011,212(1):289-295
[12] Li Jinghai(李静海).Multiscale modeling and method of energy-minimization for particle-fluid two-phase flow .Beijing:Chinese Academy of Sciences,1987
[13] Li Jinghai(李静海),Ouyang Jie(欧阳洁),Gao Shiqiu(高士秋),Ge Wei(葛蔚),Yang Ning(杨宁),Song Wenli(宋文立).Multi-scale Modeling of Complex Systems of Particle-fluid(颗粒流体复杂系统的多尺度模拟)[M].Beijing:Science Press,2005
[14] Li J H,Kwauk M.Particle-Fluid Two-Phase Flow:the Energy-Minimization Multi-Scale Method [M].Beijing:Metallurgy Industry Press,1994
[15] Lu B N,Wang W,Li J H,Wang X H,Gao S Q,Lu W M,Xu Y H,Long J.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chemical Engineering Science,2007,62(18/19/20):5487-5494
[16] Xie N,Battaglia F,Pannala S.Effects of using two-versus three-dimensional computational modeling of fluidized beds(Ⅰ):Hydrodynamics[J].Powder Technology,2008,182(1):1-13
[17] Lu Bona(鲁波娜).EMMS-based meso-scale model and its application in simulating gas-solid two-phase flows .Beijing:Chinese Academy of Sciences,2007
[18] Wang W,Li J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J].Chemical Engineering Science,2007,62(1/2):208-231
[19] Lu B N,Wang W,Li J H.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chemical Engineering Science,2009,64(15):3437-3447
[20] Das A K,de Wilde J,Heynderickx G J,Marin G B,Vierendeels J,Dick E.CFD simulation of dilute phase gas-solid riser reactors(Ⅰ):A new solution method and flow model validation[J].Chemical Engineering Science,2004,59(1):167-186
[21] Brandani S,Zhang K.A new model for the prediction of the behaviour of fluidized beds[J].Powder Technology,2006,163(1/2):80-87
[22] Zhao Y,Ding Y,Wu C,Cheng Y.Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach[J].Powder Technology,2010,199(1):2-12
[23] Cabezas Gómez L.Numerical study on the influence of various physical parameters over the gas-solid two-phase flow in the 2D riser of a circulating fluidized bed[J].Powder Technology,2003,132(2/3):216-225
[24] Chalermsinsuwan B,Gidaspow D,Piumsomboon P.Two-and three-dimensional CFD modeling of Geldart A particles in a thin bubbling fluidized bed:comparison of turbulence and dispersion coefficients[J].Chemical Engineering Journal,2011,171(1):301-313
[25] Guenther C,Syamlal M,Shadle L,Ludlow C.A numerical investigation of an industrial scale gas-solids CFB//Proceedings of the 7th International Conference on Circulating Fluidized Beds.Science Press,2002:483-489
[26] Zhang N,Lu B N,Wang W,Li J H.Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed[J].Particuology,2008,6(6):529-539
[27] Yang N,Wang W,Ge W,Li J H.CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chemical Engineering Journal,2003,96(1/2/3):71-80
[28] Milioli C C,Milioli F E.On the statistical steady state gas-solid flow in a riser as predicted through a two-fluid simulation[J].Computational & Applied Mathematics,2009,28(3):259-275
[29] Li J H,Tung Y,Kwauk M.Axial voidage profiles of fast fluidized beds in different operating regions//The 2nd International Conference on Circulating Fluidized Beds.Pergamon Press,1988:193-203
[30] Xu G W,Sun G G,Gao S Q.Estimating radial voidage profiles for all fluidization regimes in circulating fluidized bed risers[J].Powder Technology,2004,139(2):186-192
[31] Tung Y,Li J H,Kwauk M.Radial voidage profiles in a fast fluidized bed//Fluidization '88.Science Press,1988:139-146
[32] Issangya A S,Bai D,Bi H T,Lim K S,Zhu J,Grace J R.Suspension densities in a high-density circulating fluidized bed riser[J].Chemical Engineering Science,1999,54(22):5451-5460
[33] Wang W,Lu B N,Dong W G,Li J H.Multi-scale CFD simulation of operating diagram for gas-solid risers[J].The Canadian Journal of Chemical Engineering,2008,86(3):448-457
[1] 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
[2] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[3] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[4] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[5] 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323.
[6] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[7] 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633.
[8] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
[9] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
[10] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[11] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
[12] 蒋杰, 唐秋雨, 赵玲, 奚桢浩, 袁渭康. 长碳链PA1212弹性体在热环境中的分子运动和氢键研究[J]. 化工学报, 2022, 73(1): 425-433.
[13] 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17.
[14] 王慧艳, 陈怡沁, 周静红, 曹约强, 周兴贵. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383.
[15] 赵克凡, 贾胜坤, 罗祎青, 袁希钢. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[2] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[3] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[4] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[5] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[6] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[7] 谢一兵, 沈讯伟, 袁春伟. 基于固定相二氧化钛薄膜的新型多重石英管分布式光催化反应器及其水处理应用[J]. CIESC Journal, 2003, 11(1): 27 -32 .
[8] 马红武, 赵学明, 郭晓峰. 通过通量平衡分析计算经验和真实维持系数[J]. CIESC Journal, 2002, 10(1): 89 -92 .
[9] 夏金兰, 聂珍嫒, J. M. Levert. 极大螺旋微藻(分节螺旋属)在一六面体光合生物反应器中生物合成13C标识氨基酸和糖[J]. CIESC Journal, 2002, 10(5): 592 -596 .
[10] 高瑛 石磊 姚平经. 废物最小化的过程集成方法及多目标优化[J]. CIESC Journal, 2001, 9(3): 267 -272 .