化工学报 ›› 2013, Vol. 64 ›› Issue (6): 1983-1992.doi: 10.3969/j.issn.0438-1157.2013.06.012
鲁波娜1, 程从礼2, 鲁维民2, 王维1, 许友好2
LU Bona1, CHENG Congli2, LU Weimin2, WANG Wei1, XU Youhao2
摘要: MIP(maximizing iso-paraffins process)工艺采用两个反应器串联技术,可有效改善汽油质量。MIP反应器的冷态模拟虽能揭示反应器内的流动行为及几何结构的影响,但无法考虑反应引发的变化。为更准确地揭示该反应器中的油气及颗粒运动行为,尝试了三维瞬态反应模拟。模拟采用双流体模型结合十二集总反应动力学模型,并在相间动量传递模型和传热模型中考虑了多尺度结构的影响,然后与基于均匀分布的传统模型作对比。结果表明,相比于传统模型,多尺度模型能较准确预测二反段内的流动结构、颗粒浓度以及温度分布。在预测产率方面,两种模型所得结果类似,都对油浆和柴油的预测较好,对液化气和干气的预测偏差较大。这说明,仅在动量传递及传热模型中考虑多尺度结构的影响是不够的。
中图分类号:
TQ021.1
[1] | Xu Youhao(许友好), Wang Xieqing(汪爕卿).Advance in FCC process reaction chemistry[J].Engineering Sciences(中国工程科学),2007,9(8):6-14 |
[2] | Xu Youhao(许友好), Zhang Jiushun(张久顺), Long Jun(龙军), He Mingyuan(何鸣元), Xu Hui(徐惠), Hao Xiren(郝希仁).Development and commercial application of FCC process for maximizing iso-paraffins(MIP)in cracked naphtha[J].Engineering Sciences(中国工程科学), 2003,5(5):55-58 |
[3] | Xu Youhao(许友好), Zhang Jiushun(张久顺), Long Jun(龙军).A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J].Petroleum Processing and Petrochemicals(石油炼制与化工),2001,32(8):1-5 |
[4] | Xu Youhao(许友好), Gong Jianhong(龚剑洪), Zhang Jiushun(张久顺), Long Jun(龙军), Xu Hui(徐惠).Experimental study on "two reaction zone" concept connected with MIP process[J].Acta Petrolei Sinica:Petroleum Processing Section(石油学报:石油加工),2004,20(4):1-5 |
[5] | Xu Youhao(许友好), Gong Jianhong(龚剑洪), Liu Xianlong(刘宪龙), Ma Jianguo(马建国).Study on the function of the second reaction zone in MIP process[J].Petroleum Processing and Petrochemicals(石油炼制与化工), 2006,37(12):30-33 |
[6] | Cui Shouye(崔守业), Xu Youhao(许友好), Cheng Congli(程从礼), Gong Jianhong(龚剑洪).Commercialization and new developments of MIP Technology[J].Acta Petrolei Sinica:Petroleum Processing Section(石油学报:石油加工), 2010(suppl.):23-28 |
[7] | Lu B N, Wang W, Li J H, Wang X H, Gao S Q, Lu W M, Xu Y H, Long J.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chemical Engineering Science, 2007,62(18/19/20):5487-5494 |
[8] | Han I S, Chung C B.Dynamic modeling and simulation of a fluidized catalytic cracking process(Ⅰ):Process modeling[J].Chemical Engineering Science, 2001,56(5):1951-1971 |
[9] | Berry T A, McKeen T R, Pugsley T S, Dalai A K.Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit[J].Industrial & Engineering Chemistry Research, 2004,43(18):5571-5581 |
[10] | Gao J S, Xu C M, Lin S X, Yang G H, Guo Y C.Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J].AIChE Journal, 1999,45(5):1095-1113 |
[11] | Lan X Y, Xu C M, Wang G, Wu L, Gao J S.CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J].Chemical Engineering Science, 2009,64:3847-3858 |
[12] | Gan J Q, Zhao H, Berrouk A S, Yang C H, Shan H H. Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor[J].Industrial & Engineering Chemistry Research, 2011,50(20):11511-11520 |
[13] | Lu B N, Wang W, Li J H.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chemical Engineering Science, 2009,64(15):3437-3447 |
[14] | Yang W C.Handbook of Fluidization and Fluid-particle Systems[M].New York:Marcel Dekker, Inc., 2003:1868 |
[15] | Li J H, Chen A H, Yan Z L, Xu G W, Zhang X.Particle-fluid contacting in circulating fluidized beds//Avidan A A.Circulating Fluidized Beds Ⅳ[C].New York, 1993:49-54 |
[16] | O'Brien T J, Syamlal M.Particle cluster effects in the numerical simulation of a circulating fluidized bed//Avidan A A.Circulating Fluidized Beds Ⅳ.New York, 1993:345-350 |
[17] | Sundaresan S.Modeling the hydrodynamics of multiphase flow reactors:current status and challenges[J].AIChE Journal, 2000,46(6):1102-1105 |
[18] | Wang W, Li J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007,62(1/2):208-231 |
[19] | Gidaspow D.Hydrodynamics of fluidization and heat transfer:supercomputer modeling[J].Applied Mechanics Reviews, 1986,39:1-23 |
[20] | Wen C Y, Yu Y H.Mechanics of fluidization[J].Chemical Engineering Symposium Series, 1966,62(62):100-111 |
[21] | Gunn D J.Transfer of heat or mass to particles in fixed and fluidized beds[J].International Journal of Heat and Mass Transfer, 1978,21:467-476 |
[22] | Das A K, Baudrez E, Marin G B, Heynderickx G J.Three-dimensional simulation of a fluid catalytic cracking riser reactor[J].Industrial & Engineering Chemistry Research, 2003,42:2602-2617 |
[1] | 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255. |
[2] | 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
[3] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[4] | 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092. |
[5] | 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323. |
[6] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[7] | 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781. |
[8] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[9] | 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800. |
[10] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
[11] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[12] | 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
[13] | 王慧艳, 陈怡沁, 周静红, 曹约强, 周兴贵. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383. |
[14] | 赵克凡, 贾胜坤, 罗祎青, 袁希钢. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341. |
[15] | 蒋杰, 唐秋雨, 赵玲, 奚桢浩, 袁渭康. 长碳链PA1212弹性体在热环境中的分子运动和氢键研究[J]. 化工学报, 2022, 73(1): 425-433. |
|