化工学报 ›› 2013, Vol. 64 ›› Issue (6): 1983-1992.doi: 10.3969/j.issn.0438-1157.2013.06.012

• 流体力学与传递现象 • 上一篇    下一篇

基于多尺度模型的MIP提升管反应历程数值模拟

鲁波娜1, 程从礼2, 鲁维民2, 王维1, 许友好2   

  1. 1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190;
    2. 中国石化石油化工科学研究院,北京 100083
  • 收稿日期:2012-09-18 修回日期:2012-10-25 出版日期:2013-06-05 发布日期:2013-06-05
  • 通讯作者: 鲁波娜(1979—),女,博士。
  • 作者简介:鲁波娜(1979—),女,博士。
  • 基金资助:

    中国石油化工股份有限公司资助项目(110009);国家自然科学基金项目(21106157)。

Numerical simulation of reaction process in MIP riser based on multi-scale model

LU Bona1, CHENG Congli2, LU Weimin2, WANG Wei1, XU Youhao2   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
  • Received:2012-09-18 Revised:2012-10-25 Published:2013-06-05 Online:2013-06-05
  • Supported by:

    supported by the SINOPEC(110009)and the National Natural Science Foundation of China(21106157).

摘要: MIP(maximizing iso-paraffins process)工艺采用两个反应器串联技术,可有效改善汽油质量。MIP反应器的冷态模拟虽能揭示反应器内的流动行为及几何结构的影响,但无法考虑反应引发的变化。为更准确地揭示该反应器中的油气及颗粒运动行为,尝试了三维瞬态反应模拟。模拟采用双流体模型结合十二集总反应动力学模型,并在相间动量传递模型和传热模型中考虑了多尺度结构的影响,然后与基于均匀分布的传统模型作对比。结果表明,相比于传统模型,多尺度模型能较准确预测二反段内的流动结构、颗粒浓度以及温度分布。在预测产率方面,两种模型所得结果类似,都对油浆和柴油的预测较好,对液化气和干气的预测偏差较大。这说明,仅在动量传递及传热模型中考虑多尺度结构的影响是不够的。

关键词: 模拟, 多尺度模型, EMMS, 集总反应动力学, 双流体模型

Abstract: MIP (maximizing iso-paraffins process) process utilizes the technique of linking two reaction zones in series, and hence effectively improves gasoline quality.Cold simulation of MIP reactors can reveal the flow structures in the second reaction zone and also the effects of geometrical structures, but cannot provide the changes in hydrodynamics resulting from catalytic cracking reactions.To capture these changes, this work aimed at carrying out three-dimensional simulation of the MIP reactor by considering the reactions.The simulation was based on the two-fluid model and 12-lump kinetic model.The inter-phase momentum transfer and heat transfer models took into account the effects of multi-scale flow structures, and were compared with the traditional models based on homogeneous state.The simulation found that the multi-scale models could reasonably predict the flow structures and solids volume fraction in the second reaction zone as well as the temperature profiles, compared to the traditional model.For predicting product yields, both models showed similar results.They had good predictions in slurry and diesel, but fail to predict LPG and dry gas.The above finding implied that the effects of multi-scale structures should not only be considered in the momentum transfer and heat transfer models, but also be taken into account in the lumped kinetic model.

Key words: simulation, multi-scale model, EMMS, lumped reaction kinetics, two-fluid model

中图分类号: 

  • TQ021.1

[1] Xu Youhao(许友好), Wang Xieqing(汪爕卿).Advance in FCC process reaction chemistry[J].Engineering Sciences(中国工程科学),2007,9(8):6-14
[2] Xu Youhao(许友好), Zhang Jiushun(张久顺), Long Jun(龙军), He Mingyuan(何鸣元), Xu Hui(徐惠), Hao Xiren(郝希仁).Development and commercial application of FCC process for maximizing iso-paraffins(MIP)in cracked naphtha[J].Engineering Sciences(中国工程科学), 2003,5(5):55-58
[3] Xu Youhao(许友好), Zhang Jiushun(张久顺), Long Jun(龙军).A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J].Petroleum Processing and Petrochemicals(石油炼制与化工),2001,32(8):1-5
[4] Xu Youhao(许友好), Gong Jianhong(龚剑洪), Zhang Jiushun(张久顺), Long Jun(龙军), Xu Hui(徐惠).Experimental study on "two reaction zone" concept connected with MIP process[J].Acta Petrolei Sinica:Petroleum Processing Section(石油学报:石油加工),2004,20(4):1-5
[5] Xu Youhao(许友好), Gong Jianhong(龚剑洪), Liu Xianlong(刘宪龙), Ma Jianguo(马建国).Study on the function of the second reaction zone in MIP process[J].Petroleum Processing and Petrochemicals(石油炼制与化工), 2006,37(12):30-33
[6] Cui Shouye(崔守业), Xu Youhao(许友好), Cheng Congli(程从礼), Gong Jianhong(龚剑洪).Commercialization and new developments of MIP Technology[J].Acta Petrolei Sinica:Petroleum Processing Section(石油学报:石油加工), 2010(suppl.):23-28
[7] Lu B N, Wang W, Li J H, Wang X H, Gao S Q, Lu W M, Xu Y H, Long J.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chemical Engineering Science, 2007,62(18/19/20):5487-5494
[8] Han I S, Chung C B.Dynamic modeling and simulation of a fluidized catalytic cracking process(Ⅰ):Process modeling[J].Chemical Engineering Science, 2001,56(5):1951-1971
[9] Berry T A, McKeen T R, Pugsley T S, Dalai A K.Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit[J].Industrial & Engineering Chemistry Research, 2004,43(18):5571-5581
[10] Gao J S, Xu C M, Lin S X, Yang G H, Guo Y C.Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J].AIChE Journal, 1999,45(5):1095-1113
[11] Lan X Y, Xu C M, Wang G, Wu L, Gao J S.CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J].Chemical Engineering Science, 2009,64:3847-3858
[12] Gan J Q, Zhao H, Berrouk A S, Yang C H, Shan H H. Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor[J].Industrial & Engineering Chemistry Research, 2011,50(20):11511-11520
[13] Lu B N, Wang W, Li J H.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chemical Engineering Science, 2009,64(15):3437-3447
[14] Yang W C.Handbook of Fluidization and Fluid-particle Systems[M].New York:Marcel Dekker, Inc., 2003:1868
[15] Li J H, Chen A H, Yan Z L, Xu G W, Zhang X.Particle-fluid contacting in circulating fluidized beds//Avidan A A.Circulating Fluidized Beds Ⅳ[C].New York, 1993:49-54
[16] O'Brien T J, Syamlal M.Particle cluster effects in the numerical simulation of a circulating fluidized bed//Avidan A A.Circulating Fluidized Beds Ⅳ.New York, 1993:345-350
[17] Sundaresan S.Modeling the hydrodynamics of multiphase flow reactors:current status and challenges[J].AIChE Journal, 2000,46(6):1102-1105
[18] Wang W, Li J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007,62(1/2):208-231
[19] Gidaspow D.Hydrodynamics of fluidization and heat transfer:supercomputer modeling[J].Applied Mechanics Reviews, 1986,39:1-23
[20] Wen C Y, Yu Y H.Mechanics of fluidization[J].Chemical Engineering Symposium Series, 1966,62(62):100-111
[21] Gunn D J.Transfer of heat or mass to particles in fixed and fluidized beds[J].International Journal of Heat and Mass Transfer, 1978,21:467-476
[22] Das A K, Baudrez E, Marin G B, Heynderickx G J.Three-dimensional simulation of a fluid catalytic cracking riser reactor[J].Industrial & Engineering Chemistry Research, 2003,42:2602-2617
[1] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[2] 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
[3] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[4] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[5] 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323.
[6] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[7] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
[8] 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633.
[9] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
[10] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[11] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
[12] 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17.
[13] 王慧艳, 陈怡沁, 周静红, 曹约强, 周兴贵. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383.
[14] 赵克凡, 贾胜坤, 罗祎青, 袁希钢. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341.
[15] 蒋杰, 唐秋雨, 赵玲, 奚桢浩, 袁渭康. 长碳链PA1212弹性体在热环境中的分子运动和氢键研究[J]. 化工学报, 2022, 73(1): 425-433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Deliang(李德亮), LIU Xiaoqiang(刘小强) and CUI Jiehu(崔节虎). Reactive Extraction of o-Aminophenol Using Trialkylphosphine Oxide[J]. CIESC Journal, 2006, 14(1): 46 -50 .
[2] JINHaibo(靳海波),M.WangbandR.A.Williamsb. The Effect of Sparger Geometry on Gas Bubble Flow Behaviors Using Electrical Resistance Tomography[J]. CIESC Journal, 2006, 14(1): 127 -131 .
[3] 江成发, 张允湘. 甲基丙烯酸-N, N-2-甲基乙胺酯原子转移自由基聚合动力学研究[J]. CIESC Journal, 2004, 12(2): 208 -213 .
[4] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[5] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[6] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[7] 鄂承林, 卢春喜, 徐春明, 高金森, 时铭显. 气固两相流中局部颗粒质量流率的测量新方法[J]. CIESC Journal, 2003, 11(6): 617 -621 .
[8] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[9] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[10] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .