[1] |
Wagner W R, Shoji J M. Advanced regenerative cooling techniques for future space transportation systems[R]. AIAA-1975-1247. 1975
|
[2] |
Lander H, Nixon A C. Endothermic fuels for hypersonic vehicles[J]. Journal of Aircraft, 1971, 8(4): 200-207
|
[3] |
Sobel D R, Spadaccini L J. Hydrocarbon fuel cooling technologies for advanced propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2): 344-351.
|
[4] |
Zhou P, Crynes B L. Thermolytic reactions of dodecane[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(2): 508-514
|
[5] |
Ianovski L S, Clifford M. AGARD conference proceeding 536//the Propulsion and Energetics Panel 81st Symposium[C]. Italy, 1993
|
[6] |
Wickham D T, Engel J R, Hitch B D, et al. Initiators for endothermic fuels[J]. Journal of Propulsion and Power, 2001, 17(6): 1253-1257
|
[7] |
Wickham D T, Engel J R, Rooney S, et al. Additives to improve fuel heat sink capacity in air/fuel heat exchangers[J]. Journal of Propulsion and Power, 2008, 24(1): 55-63
|
[8] |
Wang Z, Lin R, Fang W, et al. Triethylamine as an initiator for cracking of heptane[J]. Energy, 2006, 31(14): 2773-2790
|
[9] |
Liu G, Han Y, Wang L, et al. Supercritical thermal cracking of n-dodecane in presence of several initiative additives: products distribution and kinetics[J]. Energy & Fuels, 2008, 22(6): 3960-3969
|
[10] |
Guan Y, Yang B, Qi S, et al. Kinetic modeling of the free-radical process during the initiated thermal cracking of normal alkanes with 1-nitropropane as an initiator[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9054-9062
|
[11] |
Chakraborty J P, Kunzru D. High-pressure pyrolysis of n-heptane: effect of initiators[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 48-55
|
[12] |
Wang Q D, Hua X X, Cheng X M, et al. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics[J]. The Journal of Physical Chemistry A, 2012, 116(15): 3794-3801
|
[13] |
Zhong F, Fan X, Yu G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550
|
[14] |
Zhang C, Xu G, Gao L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. The Journal of Supercritical Fluids, 2012
|
[15] |
Hou Lingyun, Dong Ning, Sun Dapeng. Heat transfer and thermal cracking behavior of hydrocarbon fuel[J]. Fuel, 2013, 103: 1132-1137
|
[16] |
Jiang R, Liu G, Zhang X. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy & Fuels, 2013, 27(5): 2563-2577
|
[17] |
Song K D, Choi S H, Scotti S J. Transportation cooling experiment for scram jet engine combustion chamber by high heat fluxes[J]. Journal of Propulsion and Power, 2006, 22(1): 96-102
|
[18] |
Chung T H, Ajlan M, Lee L L, Starling K E. Generalized multiparameter correlation for nonpolar and polar fluid transport-properties[J]. Industrial & Engineering Chemistry Research, 1988, 27(4): 671-679
|
[19] |
Kim S, Choi H, Kim Y. Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOem>x rocket combustion[J]. Combustion and Flame, 2012, 159: 1351-1365
|
[20] |
Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189: 277-304
|