[1] |
Luo Guangsheng (骆广生), Wang Kai (王凯), Xu Jianhong (徐建鸿), Lü Yangcheng (吕阳成), Wang Yujun (王玉军). Multiphase flow, transport and reaction in micro-structured chemical systems [J]. CIESC Journal (化工学报), 2010, 61 (7): 1621-1626
|
[2] |
Liu Zhe (刘喆). Experimental study and numerical simulation of liquid-liquid mixing intensification in mini-/micro-scale reactors [D]. Beijing: Tsinghua University, 2010
|
[3] |
Zhang J F. Lattice Boltzmann method for microfluidics: models and applications [J]. Microfluid. Nanofluid., 2011, 10 (1): 1-28
|
[4] |
Mcnamara G R, Zanetti G. Use of the Boltzmann-equation to simulate lattice-gas automata [J]. Phys. Rev. Lett., 1988, 61 (20): 2332-2335
|
[5] |
Chen S Y, Chen H D, Martinez D, Matthaeus W. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Phys. Rev. Lett., 1991, 67 (27): 3776-3779
|
[6] |
Koelman J M V A. A simple lattice Boltzmann scheme for Navier-Stokes fluid-flow [J]. Europhys. Lett., 1991, 15 (6): 603-607
|
[7] |
Qian Y H, Dhumieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. Europhys. Lett., 1992, 17 (6): 479-484
|
[8] |
Guo Zhaoli (郭照立), Zheng Chuguang (郑楚光). Theory and Applications of Lattice Boltzmann Method (格子Boltzmann方法的原理与应用) [M]. Beijing: Science Press, 2009
|
[9] |
Succi S, d'Humières D, Qian Y, Orszag S A. On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes [J]. J. Sci. Comput., 1993, 8: 219-230
|
[10] |
Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids [J]. Phys. Rev. A, 1991, 43 (8): 4320-4327
|
[11] |
Rothman D H, Keller J M. Immiscible cellular-automaton fluids [J]. J. Stat. Phys., 1988, 52 (3/4): 1119-1127
|
[12] |
Lishchuk S V, Care C M, Halliday I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents [J]. Phys. Rev. E, 2003, 67 (3): 036701
|
[13] |
Latva-Kokko M, Rothman D H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids [J]. Phys. Rev. E, 2005, 71 (5): 056702
|
[14] |
Dortona U, Salin D, Cieplak M, Rybka R B, Banavar J R. 2-Color nonlinear Boltzmann cellular-automata-surface-tension and wetting [J]. Phys. Rev. E, 1995, 51 (4): 3718-3728
|
[15] |
Leclaire S, Reggio M, Trepanier J Y. Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model [J]. Comput. Fluids., 2011, 48 (1): 98-112
|
[16] |
Leclaire S, Reggio M, Trepanier J Y. Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model [J]. Appl. Math. Model., 2012, 36 (5): 2237-2252
|
[17] |
Gunstensen A K. Lattice-Boltzmann studies of multiphase flow through porous media [D]. USA: MIT, 1992
|
[18] |
Dupin M M, Halliday I, Care C M. Multi-component lattice Boltzmann equation for mesoscale blood flow [J]. J. Phys. A: Math. Gen., 2003, 36 (31): 8517-8534
|
[19] |
Halliday I, Hollis A P, Care C M. Lattice Boltzmann algorithm for continuum multicomponent flow [J]. Phys. Rev. E, 2007, 76 (2): 026708
|
[20] |
Leclaire S, Reggio M, Trepanier J Y. Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios [J]. J. Comput. Phys., 2013, 246: 318-342
|
[21] |
Reis T, Phillips T N. Lattice Boltzmann model for simulating immiscible two-phase flows [J]. J. Phys. A: Math. Theor., 2007, 40: 4033-4053
|
[22] |
Shan X W, Chen H D. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Phys. Rev. E, 1993, 47 (3): 1815-1819
|
[23] |
Shan X W, Doolen G. Multicomponent lattice-Boltzmann model with interparticle interaction [J]. J. Stat. Phys., 1995, 81 (1/2): 379-393
|
[24] |
Shan X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models [J]. Phys. Rev. E, 2006, 73 (4): 047701
|
[25] |
Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F. Generalized lattice Boltzmann method with multirange pseudopotential [J]. Phys. Rev. E, 2007, 75 (2): 026702
|
[26] |
Shan X W, Chen H D. Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann-equation [J]. Phys. Rev. E, 1994, 49 (4): 2941-2948
|
[27] |
Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann simulation of nonideal fluids [J]. Phys. Rev. Lett., 1995, 75 (5): 830-833
|
[28] |
van der Graaf S, Nisisako T, Schroen C G P H, van der Sman R G M, Boom R M. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel [J]. Langmuir, 2006, 22 (9): 4144-4152
|
[29] |
Swift M R, Orlandini E, Osborn W R, Yeomans J M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Phys. Rev. E, 1996, 54 (5): 5041-5052
|
[30] |
Inamuro T, Konishi N, Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach [J]. Comput. Phys. Commun., 2000, 129 (1/2/3): 32-45
|
[31] |
Zhang J F, Kwok D Y. Apparent slip over a solid-liquid interface with a no-slip boundary condition [J]. Phys. Rev. E, 2004, 70 (5): 056701
|
[32] |
Zhang J F, Kwok D Y. A mean-field free energy lattice Boltzmann model for multicomponent fluids [J]. European Physical Journal-Special Topics, 2009, 171: 45-53
|
[33] |
Tölke J F. Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA [J]. Computing and Visualization in Science, 2010, 13 (1): 29-39
|
[34] |
Dupin M M, Halliday I, Care C M. Simulation of a microfluidic flow-focusing device [J]. Phys. Rev. E, 2006, 73(5): 055701(R)
|
[35] |
Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels [J]. Appl. Phys. Lett., 2003, 82 (3): 364-366
|
[36] |
Wang W T, Liu Z, Jin Y, Cheng Y. LBM simulation of droplet formation in micro-channels [J]. Chem. Eng. J., 2011, 173 (3): 828-836
|
[37] |
Kim L S, Jeong H K, Ha M Y, Kim K C. Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method [J]. Journal of Mechanical Science and Technology, 2008, 22(4): 770-779
|
[38] |
Wu L, Tsutahara M, Kim L S, Ha M. Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel [J]. Int. J. Multiphas. Flow, 2008, 34 (9): 852-864
|
[39] |
Gupta A, Murshed S M S, Kumar R. Droplet formation and stability of flows in a microfluidic T-junction [J]. Appl. Phys. Lett., 2009, 94 (16): 164107
|
[40] |
Liu H H, Zhang Y H. Droplet formation in a T-shaped microfluidic junction [J]. J. Appl. Phys., 2009, 106 (3): 034906
|
[41] |
Gupta A, Kumar R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction [J]. Microfluid. Nanofluid., 2010, 8 (6): 799-812.
|
[42] |
Yang H, Zhou Q, Fan L S. Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction [J]. Chem. Eng. Sci., 2013, 87: 100-110
|
[43] |
Inamuro T, Tajima S, Ogino F. Lattice Boltzmann simulation of droplet collision dynamics [J]. Int. J. Heat Mass Tran., 2004, 47 (21): 4649-4657
|
[44] |
Shardt O, Derksen J J, Mita S K. Simulations of droplet coalescence in simple shear flow [J]. Langmuir, 2013, 29 (21): 6201-6212
|
[45] |
Yu Z, Heraminger O, Fan L S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels [J]. Chem. Eng. Sci., 2007, 62 (24): 7172-7183
|
[46] |
Yu Z, Fan L S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation [J]. J. Comput. Phys., 2009, 228 (17): 6456-6478
|
[47] |
Yu Z, Fan L S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow [J]. Phys. Rev. E, 2010, 82 (4): 046708.
|
[48] |
Amaya-Bower L, Lee T. Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method [J]. Chem. Eng. Sci., 2011, 66 (5): 935-952
|
[49] |
Liu H H, Valocchi A J, Kang Q J. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations [J]. Phys. Rev. E, 2012, 85 (4): 046309
|
[50] |
Wang Wentan (王文坦), Liu Zhe (刘喆), Shao Ting (邵婷), Zhao Shufang (赵述芳), Jin Yong (金涌), Cheng Yi (程易). μ-LIF visualization and LBM simulation of mixing behavior inside droplets in microchannels [J]. CIESC Journal (化工学报), 2012, 63 (2): 375-381
|
[51] |
Zhao S F, Wang W T, Zhang M X, Shao T, Jin Y, Cheng Y. Three-dimensional simulation of mixing performance inside droplets in micro-channels by lattice Boltzmann method [J]. Chem. Eng. J., 2012, 207: 267-277
|
[52] |
Wang W T, Shao T, Zhao S F, Jin Y, Cheng Y. Experimental and numerical study of mixing behavior inside droplets in microchannels [J]. AIChE J., 2013, 59: 1801-1813
|
[53] |
Zhao S F, Wang W T, Shao T, Jin Y, Cheng Y. Lattice Boltzmann simulation of mixing process inside micro-droplets in a gas - liquid Taylor flow// 2013 AIChE Annual Meeting[C]. San Francisco, CA, USA, 2013
|