[1] |
Douglas M S, Alok M, Ulrich B. Aerogel-based thermal insulation[J]. J. Non-Cryst. Solids, 1998, 225: 254-259
|
[2] |
Bardy E R, Mollendorf J C, Pendergast D R. Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure[J]. ASME J. Heat Transf., 2007, 129: 232-235
|
[3] |
Zeng S Q, Hunt A, Greif R. Transport properties of gas in silica aerogel[J]. J. Non-Cryst. Solids, 1995, 186: 264-270
|
[4] |
Raed K, Gross U. Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of Knudsen and non-Knudsen porous materials[J]. Int. J. Thermophys., 2009, 30: 1343-1356
|
[5] |
Lu G, Wang X D, Duan Y Y, Li X W. Effects of non-ideal structures and high temperature on the insulation properties of aerogel-based composite materials[J]. J. Non-Cryst. Solids, 2011, 357: 3822-3829
|
[6] |
Lu X, Ardunini-Schuster M C, Kuhn J, Nilsson O, Fricke J, Pekala R W. Thermal conductivity of monolithic organic aerogels[J]. Science, 1992, 225: 971-972
|
[7] |
Lee O J, Lee K H, Tae J Y, Sun J K, Yoo K P. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. J. Non-Cryst. Solids, 2002, 298: 287-292
|
[8] |
Lu X, Caps R, Fricke J, Alviso C T, Pekala R W. Correlation between structure and thermal conductivity of organic aerogels[J]. J. Non-Cryst. Solids, 1995, 188: 226-234
|
[9] |
Zeng S Q, Hunt A J, Cao W. Pore size distribution and apparent gas thermal conductivity of silica aerogel[J]. ASME J. Heat Transf., 1994, 116: 756-759
|
[10] |
Wei G S, Liu Y S, Du X Z, Zhang X X. Gaseous conductivity study on silica aerogel and its composite insulation materials[J]. ASME J. Heat Transf., 2012, 134: 041301-6
|
[11] |
Wei Gaosheng(魏高升), Zhang Xinxin(张欣欣), Yu Fan(于帆). Unit cell model for micro, nano-porous composite insulation material[J]. J. Univ. Sci. Technol. Beijing(北京科技大学学报), 2008, 30: 781-785
|
[12] |
Duan Yuanyuan(段远源), Lin Jie(林杰), Wang Xiaodong(王晓东), Zhao Junjie(赵俊杰). Analysis of gaseous thermal conductivity models for silica aerogels[J]. CIESC Journal(化工学报), 2012, 63(S1): 54-58
|
[13] |
Lu Gui(陆规), Wang Xiaodong(王晓东), Duan Yuanyuan(段远源). Calculation method of effective thermal conductivity for nanoporous insulation material[J]. Aerospace Materials & Technology(宇航材料工艺), 2011, 1: 1-6
|
[14] |
Lu Gui(陆规), Duan Yuanyuan(段远源), Wang Xiaodong(王晓东). Effect of functional additives and non-uniform structure on insulation performance of nanoporous insulation material[J]. Aerospace Materials & Technology(宇航材料工艺), 2011, 1: 29-33
|
[15] |
Zeng S Q, Hunt A. Mean free path and apparent thermal conductivity of a gas in a porous medium[J]. ASME J. Heat Transf., 1995, 117: 758-762
|
[16] |
Zhang Huilin(张会林), Wang Jue(王珏), Deng Zhongsheng(邓忠生), Zhou Bin(周斌). Gas thermal conduction of nano-porous silica aerogels[J]. Journal of Tongji University(同济大学学报), 1999, 27: 541-544
|
[17] |
Zhao J J, Duan Y Y, Wang X D, Wang B X. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels[J]. J. Nanoparticle Res., 2012, 14: 1024
|
[18] |
Zhao Junjie(赵俊杰). Thermophysical properties and heat transfer mechanisms of microscale and nanoscale structures in aerogel-based composite insulators[D]. Beijing: Tsinghua University, 2012
|
[19] |
Zeng S Q, Hunt A, Greif R, Geometric structure and thermal conductivity of porous medium silica aerogel[J]. ASME J. Heat Transf., 1995, 117: 1055-1058
|
[20] |
Wei G S, Liu Y S, Zhang X X, Yu F, Du X Z. Thermal conductivities study on silica aerogel and its composite insulation material[J]. Int. J. Heat Mass Transf., 2011, 54: 2355-2366
|
[21] |
Gong Jianhua(龚建华). Computation of the mean geometric free path by Monte Carlo's method[J]. Journal of Hefei University of Technology(合肥工业大学学报), 1995, 18: 143-147
|