[1] |
Salmer`On-Aleoeer A, Ruiz-Ordaz N, Ju`arez-Ram`xrez C, Galíndez-Mayer J. Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp, Microbacterium phyllosphaerae, and Candida tropicalis [J]. Biochem. Eng. J., 2007, 37 (2): 201-211.
|
[2] |
Ho K L, Lin B, Chen Y Y, Lee D J. Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules [J]. Bioresource Technol., 2010, 100 (21): 5051-5063.
|
[3] |
Duan X Y, Ma F, Chang L M. Electrochemical degradation of 4-chlorophenol in aqueous solution using modified PbO2 anode [J]. Water Sci. Technol., 2012, 66 (11): 2468-2474.
|
[4] |
Neppolian B, Vinoth R, Bianchi C L, Ashokkumar M. Degradation of 4-chlorophenol and NOx using ultrasonically synthesized TiO2 loaded graphene oxide photocatalysts [J]. Sci. Adv. Mater., 2015, 7 (6): 1149-1155.
|
[5] |
Lloret L, Eibes G, Feijoo G, Moreira M T, Lema J M, Hollmann F. Immobilization of laccase by encapsulation in a sol-gel matrix and it characterization and use for the removal of estrogens [J]. Biotechnol. Progr., 2011, 27 (6): 1570-1579.
|
[6] |
Yin Y, Xiao Y,Lin G,Xiao Q,Lin Z, Cai Z. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity [J].J. Mater. Chem. B, 2015, 3: 2295-2300.
|
[7] |
Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications [J]. Chem. Soc. Rev., 2013, 42 (15): 6236-6249.
|
[8] |
Yaropolov A, Skorobogat'Ko O, Vartanov S, Varfolomeyev S. Laccase [J]. Appl. Biochem. Biot., 1994, 49 (3): 257-280.
|
[9] |
Davis S, Burns R G. Covalent immobilization of laccase on activated carbon for phenolic effluent treatment [J]. Appl. Microbiol. Biot., 1992, 37 (4): 474-479.
|
[10] |
Champagne P P, Ramsay J. Dye decolorization and detoxification by laccase immobilized on porous glass beads [J]. Bioresource Technol., 2010, 101 (7): 2230-2235.
|
[11] |
Jiang D S, Long S Y, Huang J, Xiao H Y, Zhou J Y. Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres [J]. Biochem. Eng. J., 2005, 25 (1): 15-23.
|
[12] |
Datta S, Christena L R, Rajaram Y R S. Enzyme immobilization: an overview on techniques and support materials [J]. 3 Biotech, 2013, 3 (1): 1-9.
|
[13] |
Zheng M Q, Zhang S P, Ma G H, Wang P. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes [J]. J. Biotehnol., 2014, 154 (4): 274-280.
|
[14] |
Cui J, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules [J]. Biomacromolecules, 2012, 13 (8): 2225-2228.
|
[15] |
Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings [J]. Adv. Mater., 2009, 21 (4): 431-434.
|
[16] |
Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos [J]. Nature, 2007, 448 (7151): 338-341.
|
[17] |
Lai G, Zhang H, Yong J, Yu A. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay [J]. Biosens. Bioelectron., 2013, 47: 178-183.
|
[18] |
Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields [J]. Chem. Rev., 2014, 114 (9): 5057-5115.
|
[19] |
Deng M F, Zhao H, Zhang S P, Tian C Y, Zhang D, Du P H, Liu C M, Cao H B, Li H P. High catalytic activity of immobilized laccase on core-shell magnetic nanoparticles by dopamine self-polymerization [J]. J. Mol. Catal. B-Enzym., 2015, 112: 15-24.
|
[20] |
Raul A, Laura D M, Laura C, Alvaro M, Marcel T, Valeria G, Jesús M D L F, Clara M, Ricardo I. Spatially-resolved EELS analysis of antibody distribution on biofunctionalized magnetic nanoparticles [J]. ACS Nano, 2013, 7 (5): 4006-4013.
|
[21] |
Zhang P, Wang Q Q, Zhang J N, Li G H, Wei Q F. Preparation of amidoxime-modified polyacrylonitrile nanofibers immobilized with laccase for dye degradation [J]. Fiber. Polym., 2014, 15 (1): 30-34.
|
[22] |
Wang Q Q, Cui J, Li G H, Zhang J N, Li D W, Huang F L, Wei Q F. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process [J]. Molecules, 2014, 19 (3): 3376-3388.
|
[23] |
Xu R, Chi C L, Li F T, Zhang B R. Laccase-polyacrylonitrile nanofibrous, membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal [J]. ACS Appl. Mater. Interfaces, 2013, 5 (23): 12554-12560.
|
[24] |
Yang C, Wu H, Shi J F, Wang X L, Xie J J, Jiang Z Y. Preparation of dopamine/titania hybrid nanoparticles through biomimetic mineralization and titanium (Ⅳ)-catecholate coordination for enzyme immobilization [J]. Ind. Eng. Chem. Res., 2014, 53 (32): 12665-12672.
|