[1] |
YOUNG K M, MILLER T M, WRIGHTON M S. Comparison of the thermal and photochemical reactions of (.eta.1-cyclopentadienyl) rhenium pentacarbonyl and (.eta.1-9-fluorenyl)rhenium pentacarbonyl: nonthermal chemical reactions from the lowest excited state [J]. Journal of the American Chemical Society, 1990, 112(4): 1529-1537.
|
[2] |
FUJITA M, KWON Y J, WASHIZU S, et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (Ⅱ) and 4,4'-bipyridine [J]. Journal of the American Chemical Society, 1994, 116(3): 1151-1152.
|
[3] |
VENKATARAMAN D, GARDNER G B, LEE S, et al. Zeolite-like behavior of a coordination network [J]. Journal of the American Chemical Society, 1995, 117(46): 11600-11601.
|
[4] |
FARHA O K, YAZAYD?N A Ö, ERYAZICI I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities [J]. Nature Chemistry, 2010, 2(11): 944-948.
|
[5] |
FERNANDEZ M, WOO T K, WILMER C E, et al. Large-scale quantitative structure-property relationship (QSPR) analysis of methane storage in metal-organic frameworks [J]. Journal of Physical Chemistry C, 2013, 117(15): 7681-7689.
|
[6] |
MA Q T, YANG Q Y, GHOUFI A, et al. Guest-modulation of the mechanical properties of flexible porous metal-organic frameworks [J]. Journal of Materials Chemistry A, 2014, 2(25): 9691-9698.
|
[7] |
ZHANG L L, HU Z Q, JIANG J W. Sorption-induced structural transition of zeolitic imidazolate framework-8: a hybrid molecular simulation study [J]. Journal of the American Chemical Society, 2013, 135(9): 3722-3728.
|
[8] |
ZHANG L L, WU G, JIANG J W. Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility [J]. Journal of Physical Chemistry C, 2014, 118(17): 8788-8794.
|
[9] |
ROSENFELD Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing [J]. Phys. Rev. Lett., 1989, 63(9): 980-983.
|
[10] |
ROSENFELD Y. Phase separation of asymmetric binary hard-sphere fluids: self-consistent density functional theory [J]. Physical Review Letters, 1994, 72(24): 3831-3834.
|
[11] |
YU Y X, WU J Z. Structures of hard-sphere fluids from a modified fundamental-measure theory [J]. Journal of Chemical Physics, 2002, 117(22): 10156-10164.
|
[12] |
PARR R G. Density-functional Theory of Atoms and Molecules [M]. New York, Oxford: Oxford University Press, 1989.
|
[13] |
KIERLIK E, ROSINBERG M L. Density-functional theory for inhomogeneous fluids — adsorption of binary mixtures [J]. Physical Review A, 1991, 44(8): 5025-5037.
|
[14] |
LIU Y, LIU H L, HU Y, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks [J]. Journal of Physical Chemistry B, 2010, 114(8): 2820-2827.
|
[15] |
FU J, LIU Y, TIAN Y, et al. Density functional methods for fast screening of metal-organic frameworks for hydrogen storage [J]. Journal of Physical Chemistry C, 2015, 119: 5374-5385.
|
[16] |
YU Y X, YOU F Q, TANG Y P, et al. Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: grand canonical Monte Carlo simulation and density functional study [J]. Journal of Physical Chemistry B, 2006, 110(1): 334-341.
|
[17] |
TANG Y P, LU B C Y. Analytical description of the Lennard-Jones fluid and its application [J]. AIChE Journal, 1997, 43(9): 2215-2226.
|
[18] |
NEIMARK A V, RAVIKOVITCH P I. Capillary condensation in MMS and pore structure characterization [J]. Microporous and Mesoporous Materials, 2001, 44: 697-707.
|
[19] |
YU Y X. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces [J]. Journal of Chemical Physics, 2009, 131(2): 024704.
|
[20] |
SIDERIUS D W, GELB L D. Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids [J]. Langmuir, 2009, 25(3): 1296-1299.
|
[21] |
LIU Y, LIU H L, HU Y, et al. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal organic frameworks [J]. Journal of Physical Chemistry B, 2009, 113(36): 12326-12331.
|
[22] |
BORAH B, ZHANG H, SNURR R Q. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage [J]. Chemical Engineering Science, 2015, 124: 135-143.
|
[23] |
KIM K C, MOGHADAM P Z, FAIREN-JIMENEZ D, et al. Computational screening of metal catecholates for ammonia capture in metal-organic frameworks [J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3257-3267.
|
[24] |
SIMON C M, KIM J, GOMEZ-GUALDRON D A, et al. The materials genome in action: identifying the performance limits for methane storage [J]. Energy & Environmental Science, 2015, 8(4): 1190-1199.
|
[25] |
ZHANG H D, DERIA P, FARHA O K, et al. A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks [J]. Energy & Environmental Science, 2015, 8(5): 1501-1510.
|
[26] |
CHUNG Y G, CAMP J, HARANCZYK M, et al. Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals [J]. Chemistry of Materials, 2014, 26(21): 6185-6192.
|
[27] |
COLON Y J, SNURR R Q. High-throughput computational screening of metal-organic frameworks [J]. Chemical Society Reviews, 2014, 43(16): 5735-5749.
|
[28] |
GOMEZ-GUALDRON D A, GUTOV O V, KRUNGLEVICIUTE V, et al. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane [J]. Chemistry of Materials, 2014, 26(19): 5632-5639.
|
[29] |
LIU D H, ZHONG C L. Understanding gas separation in metal-organic frameworks using computer modeling [J]. Journal of Materials Chemistry, 2010, 20(46): 10308-10318.
|
[30] |
WU D, WANG C C, LIU B, et al. Large-scale computational screening of metal-organic frameworks for CH4/H2 separation [J]. AIChE Journal, 2012, 58(7): 2078-2084.
|
[31] |
LI Z J, XIAO G, YANG Q Y, et al. Computational exploration of metal-organic frameworks for CO2/CH4 separation via temperature swing adsorption [J]. Chemical Engineering Science, 2014, 120: 59-66.
|
[32] |
LIU Y, ZHAO S L, LIU H L, et al. High-throughput and comprehensive prediction of H2 adsorption in metal-organic frameworks under various conditions [J]. AIChE Journal, 2015, 61(9): 2951-2957. DOI: 10.1002/aic.14842.
|
[33] |
LIU Y, GUO F Y, HU J, et al. Screening of desulfurization adsorbent in metal-organic frameworks: a classical density functional approach [J]. Chemical Engineering Science, 2015, 137(1): 170-177.
|
[34] |
SKOULIDAS A I, SHOLL D S. Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations [J]. Journal of Physical Chemistry B, 2002, 106(19): 5058-5067.
|
[35] |
BABARAO R, JIANG J W. Diffusion and separation of CO2 and CH4 in silicalite, C-168 Schwarzite,and IRMOF-1: a comparative study from molecular dynamics simulation [J]. Langmuir, 2008, 24(10): 5474-5484.
|
[36] |
SKOULIDAS A I, SHOLL D S. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations [J]. Journal of Physical Chemistry B, 2005, 109(33): 15760-15768.
|
[37] |
ROSENFELD Y. Relation between transport-coefficients and internal entropy of simple systems [J]. Physical Review A, 1977, 15(6): 2545-2549.
|
[38] |
DZUGUTOV M. A universal scaling law for atomic diffusion in condensed matter [J]. Nature, 1996, 381(6578): 137-139.
|
[39] |
DZUGUTOV M. Anomalous slowing down in the metastable liquid of hard spheres [J]. Physical Review E, 2002, 65(3): 032501.
|
[40] |
ROSENFELD Y. A quasi-universal scaling law for atomic transport in simple fluids [J]. Journal of Physics-Condensed Matter, 1999, 11(28): 5415-5427.
|
[41] |
MITTAL J, ERRINGTON J R, TRUSKETT T M. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids [J]. Journal of Physical Chemistry B, 2007, 111(34): 10054-10063.
|
[42] |
VAZ R V, MAGALHAES A L, FERNANDES D L A, et al. Universal correlation of self-diffusion coefficients of model and real fluids based on residual entropy scaling law [J]. Chemical Engineering Science, 2012, 79: 153-162.
|
[43] |
CARMER J, GOEL G, POND M J, et al. Enhancing tracer diffusivity by tuning interparticle interactions and coordination shell structure [J]. Soft Matter, 2012, 8(15): 4083-4089.
|
[44] |
HE P, LI H Q, HOU X J. Excess-entropy scaling of dynamics for methane in various nanoporous materials [J]. Chemical Physics Letters, 2014, 593: 83-88.
|
[45] |
HE P, LIU H, ZHU J Q, et al. Tests of excess entropy scaling laws for diffusion of methane in silica nanopores [J]. Chemical Physics Letters, 2012, 535: 84-90.
|
[46] |
CHOPRA R, TRUSKETT T M, ERRINGTON J R. Excess-entropy scaling of dynamics for a confined fluid of dumbbell-shaped particles [J]. Physical Review E, 2010, 82(4): 041201.
|
[47] |
LIU Y, FU J, WU J Z. Excess-entropy scaling for gas diffusivity in nanoporous materials [J]. Langmuir, 2013, 29(42): 12997-13002.
|