化工学报 ›› 2016, Vol. 67 ›› Issue (4): 1459-1466.DOI: 10.11949/j.issn.0438-1157.20151309
覃吴, 侯翠翠, 张俊姣, 肖显斌, 程伟良, 董长青, 杨勇平
收稿日期:
2015-08-17
修回日期:
2015-10-14
出版日期:
2016-04-05
发布日期:
2016-04-05
通讯作者:
覃吴
基金资助:
国家自然科学基金项目(51206044);中央高校基金项目(2014MS36,2014ZD14);北京市自然科学基金项目(3132017);111引智项目(B12034)。
QIN Wu, HOU Cuicui, ZHANG Junjiao, XIAO Xianbin, CHENG Weiliang, DONG Changqing, YANG Yongping
Received:
2015-08-17
Revised:
2015-10-14
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the National Natural Science Foundation of China (51206044), the Fundamental Research Funds for the Central Universities (2014MS36, 2014ZD14), the Natural Science Foundation of Beijing (3132017) and the 111 Project (B12034).
摘要:
前期研究发现高弥勒指数晶面载氧体Fe2O3[104]具有高的化学链燃烧反应特性,且Co对煤及其热解中间产物具有催化气化和催化转化作用。通过正交实验优化制备Co-Fe2O3[104]/Al2O3载氧体体系结构,开展Co-Fe2O3[104]/Al2O3与褐煤的化学链燃烧,揭示载氧体与褐煤发生化学链燃烧的特性。结果表明:形貌控制制备的高弥勒指数晶面铁基载氧体Co-Fe2O3[104]/Al2O3(质量分数10%)促进了褐煤化学链燃烧过程中氧的迁移速率以及载氧体的还原程度,进而显著提高了载氧体与褐煤化学链燃烧的反应速率及反应效率。进一步通过CO多循环化学链燃烧反应、XRD和TEM表征了Co-Fe2O3[104]/Al2O3(10%)的可再生性及反应稳定性。
中图分类号:
覃吴, 侯翠翠, 张俊姣, 肖显斌, 程伟良, 董长青, 杨勇平. Co-Fe2O3[104]铁基载氧体优化体系作用下褐煤化学链燃烧特性[J]. 化工学报, 2016, 67(4): 1459-1466.
QIN Wu, HOU Cuicui, ZHANG Junjiao, XIAO Xianbin, CHENG Weiliang, DONG Changqing, YANG Yongping. Chemical looping combustion characteristics of lignite using Co-Fe2O3[104]/Al2O3 oxygen carrier[J]. CIESC Journal, 2016, 67(4): 1459-1466.
[1] | RICHTER H, KNOCHE K. Reversibility of combustion process[J]. Symposium Series, 1983, 235 (1): 71-86. |
[2] | LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation application of chemical-looping combustion[J]. Chem. Eng. Sci., 2001, 56: 3101-3113. |
[3] | LYNGFELT A, THUNMAN H. Construction and 100 h of operational experience of a 10 kW chemical-looping combustor[M]//THOMAS D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project. Elsevier Science Ltd., 2005: 625-645. |
[4] | ADANEZ J, ABAD A, FRANCISCO G L, et al. Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energ. Combust., 2012, 38 (2): 215-282. |
[5] | CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83: 1215-1225. |
[6] | 陈磊, 金晶, 段慧维, 等. Ni基和Co基金属载氧体的持续循环能力研究[J]. 热能与动力工程, 2011, 26 (6): 665-670. CHEN L, JIN J, DUAN H W, et al. The study of continue circulation of nickel-, cobalt-based oxygen carriers[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (6): 665-670. |
[7] | MOHAMMAD M H, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review[J]. Chem. Eng. Sci., 2008, 63: 4433-4451. |
[8] | ADÁNEZ J, DE DIEGO L F, GARCÍA-LABIANO F. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels, 2004, 18 (2): 371-377. |
[9] | DUESO C, ABAD A, GARCÍA-LABIANO F. Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion[J]. Fuel, 2010, 89 (11): 3399-3409. |
[10] | ZHAO H B, LIU L M, WANG B W, et al. Sol-gel-derived NiO/NiAl2O4 oxygen carriers for chemical-looping combustion by coal char[J]. Energy Fuels, 2008, 22 (2), 898-905. |
[11] | MORI H, WEN C J, OTOMO J, et al. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique[J]. Appl. Catal. A-Gen., 2003, 245 (1): 79-85. |
[12] | MATTISSON T, LEION H, LYNGFELT A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88 (4): 683-690. |
[13] | DENNIS J S, MÜLLER C R, SCOTT S A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: performance with bituminous coals[J]. Fuel, 2010, 89 (9): 2353-2354. |
[14] | HOSSAIN M M, SEDOR K E, DE LASA H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: desorption kinetics and metal-support interaction[J]. Chem. Eng. Sci., 2007, 62: 5464-5472. |
[15] | 张腾, 李振山, 蔡宁生. 利用钙钛矿型氧化物制取O2-CO2混合气体的实验研究[J]. 工程热物理学报, 2008, (9): 1591-1594. ZHANG T, LI Z S, CAI N S. Kinetics of O2 absorption/desorption using a Co-based oxygen carrier[J]. Journal of Engineering Thermophysics, 2008, (9): 1591-1594. |
[16] | 王赵国, 洪慧, 金红光. (CoO+1.0% PtO2)/CoAl2O4化学链燃烧反应性能实验研究[J]. 中国电机工程学报, 2014, 34 (2): 253-259. DOI: 10.13334/j.0258-8013. pcsee.2014.02.006 WANG Z G, HONG H, JIN H G, et al. Experimental investigation on chemical-looping combustion reaction performance of (CoO+1.0%PtO2)/CoAl2O4[J]. Proceedings of the CSEE, 2014, 34 (2): 253-259.DOI: 10.13334/j.0258-8013. pcsee.2014.02.006 |
[17] | ARJMANDA M, LEIONA H, LYNGFELT A, et al. Use of manganese ore in chemical-looping combustion (CLC)—effect on steam gasification[J]. Int. J. Greenhouse Gas Control, 2012, 8: 56-60. |
[18] | ARJMANDA M, LEIONA H, LYNGFELT A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energy, 2014, 113: 1883-1894. |
[19] | WANG B W, ZHAO H B, ZHENG Y, et al. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J]. Fuel Processing Technology, 2012, 96: 104-115. |
[20] | 胡月, 王伟, 花秀宁, 等. 不同负载铁基载氧体的制备与性能研究[J]. 应用化工, 2014, 43 (6): 979-981. HU Y, WANG W, HUA X N, et al. Preparation and reactivity performance of iron-based oxygen carriers supported on different inert carriers[J]. Applied Chemical Industry, 2014, 43 (6): 979-981. |
[21] | 石司默, 董长青, 覃吴, 等. Fe2O3/粉煤灰载氧体化学链燃烧实验与机理研究[J]. 化工学报, 2012, 63 (12): 4010-4018. DOI: 10.3969/j.issn.0438-1157.2012.12.039. SHI S M, DONG C Q, QIN W, et al. Experimental and theoretical study of Fe2O3/coal ash oxygen carrier in CLC system[J]. CIESC Journal, 2012, 63 (12): 4010-4018. DOI: 10.3969/j.issn.0438-1157.2012.12.039. |
[22] | LEION H, MATTISSON T, LYNGFELT A. Solid fuels in chemical-looping combustion[J]. Int. J. Greenhouse Gas Control, 2008, 2: 180-193. |
[23] | MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron oxide particless application to chemical-looping combustion[J]. Energy Fuels, 2004, 18: 628-637. |
[24] | WANG B W, LÜ H S, ZHAO H B, et al. Experimental and simulated investigation of chemical looping combustion of coal with Fe2O3 based oxygen carrier[J]. Procedia Engineering, 2011, 16: 390-395. |
[25] | 覃吴, 林常枫, 程伟良, 等. 表面形貌控制增强铁基载氧体与褐煤化学链燃烧反应活性[J]. 高等学校化学学报, 2015, 36: 116-123. DOI: 10.7503/cjcu20140756. QIN W, LIN C F, CHENG W L, et al. The reactivity of chemical looping combustion between brown coal and iron-based oxygen carrier inforced by surface morphology control[J]. Chemical Journal of Chinese Universities, 2015, 36: 116-123. DOI: 10.7503/cjcu20140756. |
[26] | QIN W, LIN C F, LONG D T, et al. Reaction activity and deep reduction reaction mechanism of the high index iron oxide surface in chemical looping combustion[J]. Acta Phys. Chim. Sin., 2015, 31 (4): 667-675. |
[27] | QIN W, WANG Y, LIN C F, et al. Possibility of morphological control to improve the activity of oxygen carriers for chemical looping combustion[J]. Energy Fuels, 2015, 29: 1210-1218. |
[28] | 郝丽芳, 李松庚, 崔丽杰. 煤催化热解技术研究进展[J]. 煤炭科学技术, 2010, 19 (40): 108-112. DOI: 10.13199/j.cst.2012.10.114.haolf.004. HAO L F, LI S G, CUI L J. The research progress on catalytic pyrolysis of coal[J]. Coal Science and Technology, 2010, 19 (40): 108-112. DOI: 10.13199/j.cst.2012.10.114.haolf.004. |
[29] | 许邦. 褐煤及液化残渣共热解特性研究[D]. 北京: 中国矿业大学, 2014 XU B. Co-pyrolysis of lignite and direct coal liquefaction residue[D]. Beijing: China University of Mining and Technology, 2014. |
[30] | HAN J Z, WANG X D, YUE J R. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process. Technol., 2014, 122: 98-106. |
[31] | 邹献武, 姚建中, 杨学民. 喷动-载流床中Co/ZSM-5分子筛催化剂对煤热解的催化作用[J]. 工程学报, 2007, 7 (6): 1107-1103. ZOU X W, YAO J Z, YANG X M. The catalysis of Co/ZSM-5 molecular sieve catalyst on coal pyrolysis in a fluidized-bed[J]. Journal of Process Engineering, 2007, 7 (6): 1107-1103. |
[32] | WANG B W, XIAO G, SONG X Y, et al. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier[J]. J. Therm. Anal. Calorim., 2014, 118 (3): 1593-1602. |
[33] | ?ABOJKO G, KSEPKO E. Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques[J]. J. Therm. Anal. Calorim., 2014, 117 (1): 151-162. |
[34] | 覃吴, 李渠, 董长青, 等. Co-Fe2O3纳米载氧体作用下CO化学链燃烧富集CO2[J]. 化工学报, 2014, 65 (8): 3136-3143. DOI: 10.3969/j.issn.0438-1157.2014.08.039. QIN W, LI Q, DONG C Q, et al. CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal, 2014, 65 (8): 3136-3143. DOI: 10.3969/j.issn.0438-1157.2014.08.039. |
[35] | LIU Z, LÜ B L, WU D, et al. Preparation and properties of octadecahedral α-Fe2O3 nanoparticles enclosed by {104} and {112} facets[J]. Eur. J. Inorg. Chem., 2012, 25: 4076-4081. |
[36] | 张殿奎.我国褐煤综合利用的发展现状及展望[J]. 神华科技, 2010, 8 (1): 52-56. ZHANG D K. Development situation and outlook for comprehensive utilization of brown coal in China[J]. Northwest Coal, 2010, 8 (1): 52-56. |
[37] | 王保文, 化学链燃烧技术中铁基氧载体的制备及其性能研究[D]. 武汉: 华中科技大学, 2008. WANG B W. The study on the preparation and properties of iron-based oxygen carriers in chemical looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008.review[J]. Chem. Eng. Sci., 2008, 63: 4433-4451 |
[8] | Adánez J, de Diego L F, García-Labiano F. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels. 2004, 18(2): 371-377 |
[9] | Dueso C, Abad A, García-Labiano F. Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion[J]. Fuel, 2010, 89(11): 3399-3409 |
[10] | Zhao H B, Liu L M, Wang B W, Xu D, Jiang L L, Zheng C G. Sol-gel-derived NiO/NiAl2O4 oxygen carriers for chemical-looping combustion by coal char[J]. Energy Fuels, 2008, 22(2), 898-905 |
[11] | Mori H, Wen C J, Otomo J, Eguchi K, Takahashi H. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique [J]. Appl. Catal. A-Gen., 2003, 245(1): 79-85 |
[12] | Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88(4): 683-690 |
[13] | Dennis J S, Müller C R, Scott S A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals[J]. Fuel, 2010, 89(9): 2353-2354 |
[14] | Hossain M M, Sedor K E, de Lasa H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal-support interaction[J]. Chem. Eng. Sci., 2007, 62: 5464 -5472 |
[15] | Zhang Teng(张腾), Li Zhenshan(李振山), Cai Ningsheng(蔡宁生). Kinetics of O2 absorption/desorption using a Co-based oxygen carrier[J]. Chinese Society of Engineering Thermophysics (China) (中国工程热物理学会) |
[16] | Wang Zhangguo(王赵国), Hong Hui(洪慧), Jing Hongguang(金红光), Han Tao(韩涛), He Fengjuan(贺凤娟). Experimental Investigation on chemical-looping combustion reaction performance of (CoO+1.0%PtO2)/ CoAl2O4[J]. Proceedings of the CSEE (China) (中国电机工程学报), 2014, 34(2): 253-259 |
[17] | Arjmanda M, Leiona H, Lyngfelt A, Mattisson T. Use of manganese ore in chemical-looping combustion (CLC)—effect on steam gasification[J]. Int. J. Greenhouse Gas Control, 2012, 8: 56-60 |
[18] | Arjmanda M, Leiona H, Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energy, 2014, 113: 1883-1894 |
[19] | Wang B W, Zhao H B, Zheng Y, Liu Z H, Yan R, Zheng C G. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J]. Fuel Processing Technology, 2012, 96: 104-115 |
[20] | Hu Yue(胡月), Wang Wei(王伟), Hua Xiuning(花秀宁), Han Ping(韩萍). Preparation and reactivity performance of iron-based oxygen carriers supported on different inert carriers[J]. Chinese Journal of Applied Chemistry (China) (应用化学), 2014, 43(6) |
[21] | Shi Simo(石司默), Dong Changqing(董长青), Qin Wu(覃吴), Wang Lei(王磊), LiWenyan(李文艳), Yang Yongping(杨勇平). Experimental and theoretical study of Fe2O3/coal ash osygen carrier in CLC system[J]. CIESC Journal (China) (化工学报), 2012, 63(12): 4010-4018 |
[22] | Leion H, Mattisson T, Lyngfelt A. Solid fuels in chemical-looping combustion[J]. Int. J. Greenhouse Gas Control, 2008, 2: 180-193 |
[23] | Mattisson T, Johansson M, Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particless application to chemical-looping combustion[J]. Energy Fuels, 2004, 18: 628-637 |
[24] | Wang B W, Lv H S, Zhao H B, Zheng C G. Experimental and simulated investigation of chemical looping combustion of coal with Fe2O3 based oxygen carrier[J]. Procedia Engineering, 2011, 16: 390-395 |
[25] | Qin Wu(覃吴), Lin Changfeng(林常枫), Cheng Weilaing(程伟良), Xiao Xianbin(肖显斌), The reactivity of chemical looping combustion between brown coal and iron-based oxygen carrier inforced by surface morphology control[J]. Chemical Journal Of Chinese Universities (China) (高等学校化工学报), 2015, 36: 116-123 |
[26] | Qin W, Lin C F, Long D T, Xiao X B, Dong C Q. Reaction activity and deep reduction reaction mechanism of the high index iron oxide surface in chemical looping combustion[J]. Acta Phys Chim Sin., 2015, 31(4): 667-675 |
[27] | Qin W, Wang Y, Lin C F, Hu X Q, Dong C Q. Possibility of morphological control to improve the activity of oxygen carriers for chemical looping combustion[J]. Energy Fuels, 2015, 29: 1210-1218. |
[28] | Hao Lifang(郝丽芳), Li Songgen(李松庚), Cui Lijie(崔丽杰). The research progress on catalytic pyrolysis of coal[J]. Coal science and Technology (China) (煤炭科学技术), 2010, 19(40): 108-112 |
[29] | Clean coal technologies in Japan[R]. Japan Coal Energy Center, 2007: 67-68 |
[30] | Xu Ban(许邦). Co-pyrolysisof lignite and direct coal liquefaction residue[D]. China University of Mining and Technology (中国矿业大学), 2014 |
[31] | Zou Xianw(邹献武), Yao Jianzhong(姚建中), Yang Xuemin(杨学民). The catalysis of Co/ZSM-5 molecular sievecatalyst on coal pyrolysis in a fluidized-bed[J]. Journal of process engineering (China) (工程学报), 2007, 7(6): 1107-1103 |
[32] | Han J Z, Wang X D, Yue J R. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process. Technol., 2014, 122: 98-106 |
[33] | Wang B W, Xiao G, Song X Y, Zhao H B, Zheng C G. Chemical looping combustion of high-sulfur coal with NiFe2O4 -combined oxygen carrier[J]. J. Therm. Anal. Calorim., 2014, 118(3), 1593-1602 |
[34] | ?abojko G, Ksepko E. Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques[J]. J. Therm. Anal. Calorim., 2014, 117(1), 151-162 |
[35] | Qin Wu(覃吴), Li Qu(李渠), Dong Changqing(董长青), Cheng Weiliang(程伟良), Yang Yongping(杨勇平), CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal (China) (化工学报), 2014, 65(8): 3136-3143 |
[36] | Liu Z, Lv B L, Wu D, Sun Y H, Xu Y. Preparation and properties of octadecahedral α-Fe2O3 nanoparticles enclosed by {104} and {112} facets[J]. Eur. J. Inorg. Chem., 2012, 4076-4081 |
[37] | Zhang Diankui(张建奎). The development status and prospect of comprehensive utilization of lignite in China[J]. Northwest Coal(China), 2010, 8(1): 52-56 |
[38] | Wang Baowen(王保文). the study on the preparation and properties of iron-based oxygen carriers in Chemical looping combustion[D]. The Huazhong University of Science and Technology, 2008 |
[1] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[2] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[5] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[6] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[7] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[8] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[9] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[10] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[11] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[12] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[13] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[14] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[15] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||