[1] |
巴苏. 生物质气化和热解:实际设计和理论[M]. 北京: 学术出版社, 2010. BASU P. Biomass Gasification and Pyrolysis: Practical Design and Theory[M]. Beijing: Academic Press, 2010.
|
[2] |
孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京:化学工业出版社, 2013. SUN L, ZHANG X D. Biomass Pyrolysis Gasification Principle and Technology[M]. Beijing: Chemical Industry Press, 2013.
|
[3] |
骆仲泱, 周劲松, 王树荣, 等. 中国生物质能利用技术评价[J]. 中国能源, 2004, 26(9):39-42. LUO Z Y, ZHOU J S, WANG S R, et al. Evaluation of utilization technology of biomass energy in China[J]. China Energy, 2004, 26(9):39-42.
|
[4] |
MCKENDRY P. Energy production from biomass (Ⅰ): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.
|
[5] |
DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248.
|
[6] |
WORASUWANNARAK N, SONOBE T, TANTHAPANICKAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 265-271.
|
[7] |
HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 328-336.
|
[8] |
VAN DE VELDEN M, BAEYENS J, BREMS A, et al. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[J]. Renewable Energy, 2010, 35(1): 232-242.
|
[9] |
黄晓露. 木质素模型化合物热解的微观机理研究[D]. 重庆: 重庆大学, 2012. HUANG X L. Studies of molecular level pyrolysis mechanism of lignin model compounds[D]. Chongqing: Chongqing University, 2012.
|
[10] |
叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8): 1782-1791. YE D Y, HUANG H, FU H Q, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8): 1782-1791.
|
[11] |
YU Z P, PENG H, LIN D, et al. The structure characteristic of hemicellulose:a review[J]. Polymer Bulletin, 2011, (6): 48-54.
|
[12] |
SHUNAN H, MINGHUA L, JUAN F, et al. Research status and progress of lignin adsorbent[J]. Paper Science and Technology, 2004, 23(2): 38-43.
|
[13] |
谭洪, 王树荣, 骆仲泱, 等. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714. TAN H, WANG S R, LUO Z Y, et al. Experimental study of lignin flash pyrolysis[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(5): 710-714.
|
[14] |
FAHMI R, BRIDGWATER A, DARVELL L, et al. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel, 2007, 86(10): 1560-1569.
|
[15] |
SHIMADA N, KAWAMOTO H, SAKA S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 80-87.
|
[16] |
NIK-AZAR M, HAHALIGOL M, SOHRABI M, et al. Mineral matter effects in rapid pyrolysis of beech wood[J]. Fuel Processing Technology, 1997, 51(1): 7-17.
|
[17] |
PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technology, 2010, 101(12): 4646-4655.
|
[18] |
NOWAKOWSKI D J, JONES J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 12-25.
|
[19] |
温雨鑫. 高升温速率和压力条件下的煤热解和气化特性研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013. WEN Y X. Research on the characteristics of coal pyrolysis and gasification at high heating rates and high pressure[D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
[20] |
SONG Y, XIANG J, HU S, et al. Importance of the aromatic structures in volatiles to the in-situ destruction of nascent tar during the volatile-char interactions[J]. Fuel Processing Technology, 2015, 132: 31-38.
|
[21] |
YANG C, DING Y, LIU S, et al. Experiment research of wheat straw fast pyrolysis[J]. Chemistry & Bioengineering, 2005, 22(8): 13-15.
|
[22] |
WU S, LUAN J, SUN R, et al. Gas phase analysis of biomass fast pyrolysis [J]. Acta Energiae Solaris Sinica, 2009, 30(11): 1554-1560.
|
[23] |
ZHAO Y J, FENG D D, ZHANG Y, et al. Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar[J]. Fuel Processing Technology, 2015, 141(1):54-60.
|
[24] |
LI C Z, SATHE C, KERSHAW J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(s 3/4): 427-438.
|
[25] |
SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian brown coal[J]. Energy & Fuels, 1999, 13(3): 748-755.
|
[26] |
LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12): 1664-1683.
|
[27] |
GUO D L, WU S B, LIU B, et al. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Applied Energy, 2012, 95(2): 22-30.
|
[28] |
GUO D L, WU S B, RUI L, et al. Effect of organic bound Na groups on pyrolysis and CO2-gasification of alkali lignin[J]. Bioresources. 2011, 6(4): 4145-4157.
|
[29] |
ZHANG L X, KUDO S, TSUBOUCHI N, et al. Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Processing Technology, 2013, 113: 1-7.
|
[30] |
ZHANG M, RESENDE F L, MOUTSOGLOU A, et al. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65-71.
|
[31] |
BRITT P F, BUCHANAN A, THOMAS K B, et al. Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways[J]. Journal of Analytical and Applied Pyrolysis, 1995, 33: 1-19.
|
[32] |
LIU Q, WANG S, ZHENG Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177.
|
[33] |
WANG S, WANG K, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnology Advances, 2009, 27(5): 562-567.
|
[34] |
WORNAT M J, HURT R H, YANG N Y, et al. Structural and compositional transformations of biomass chars during combustion[J]. Combustion and Flame, 1995, 100(1): 131-143.
|
[35] |
WORNAT M J, NELSON P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1992, 6(2): 136-142.
|
[36] |
WORNAT M J, SAKUROVS R. Proton magnetic resonance thermal analysis of a brown coal: effects of ion-exchanged metals[J]. Fuel, 1996, 75(7): 867-871.
|
[37] |
LI C Z, NELSON P F. Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor[J]. Energy & Fuels, 1996, 10(5): 1083-1090.
|
[38] |
LI C Z, MADRALI E S, WU F, et al. Comparison of thermal breakdown in coal pyrolysis and liquefaction[J]. Fuel, 1994, 73(6): 851-865.
|
[39] |
LI C Z, WU F, CAI H Y, et al. UV-fluorescence spectroscopy of coal pyrolysis tars[J]. Energy & Fuels, 1994, 8(5): 1039-1048.
|
[40] |
GRAY V R. The role of explosive ejection in the pyrolysis of coal[J]. Fuel, 1988, 67(9): 1298-1304.
|
[41] |
SAITO M, SADAJATA M, SATO M, et al. Combustion rates of pulverized coal particles in high-temperature/high-oxygen concentration atmosphere[J]. Combustion and Flame, 1991, 87(1): 1-12.
|
[42] |
SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian brown coal[J]. Energy & Fuels, 1999, 13(3): 748-755.
|