[1] |
姜巨福, 藤东. 液态金属成型理论及机械作用过程研究[J]. 中国有色金属学会会刊, 2003, 13(2):369-375. JIANG J F, TENG D. Mechanics and forming theory of liquid metal forging[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(2):369-375.
|
[2] |
黄志勇, 黄智陶, 张强, 等. 原子荧光光谱法测定环境水及土壤样品中的汞形态含量[J]. 光谱学与光谱分析, 2007, 27(11):2361-2367. HUANG Z Y, HUANG Z T, ZHANG Q, et al. Atomic fluorescence spectrometry determination of mercury in water and soil samples form content[J]. Spectroscopy and Spectral Analysis, 2007, 27(11):2361-2367.
|
[3] |
杨伟峰, 张雪荧, 王飞, 等. 液态金属镓回路搭建及无窗靶实验研究[J]. 原子能科学与技术, 2014, 15(9):1571-1575. YANG W F, ZHANG X Y, WANG F, et al. The loop experimental research of liquid metal gallium and windowless target set[J]. Atomic Energy Science and Technology, 2014, 15(9):1571-1575.
|
[4] |
毕可明, 韩冶, 柴宝华. 差动变压器式单点液态金属液位计的研制[J]. 原子能科学与技术, 2014, 48(Z1):608-612. BI K M, HAN Y, CHAI B H. The development of the differential transformer type single point of liquid metal level gauge[J]. Atomic Energy Science and Technology, 2014, 48(Z1):608-612.
|
[5] |
赵凌志, 彭爱武, 李建, 等. 液态金属磁流体发电机电枢反应分析[J]. 电工技术学报, 2015, 30(17):127-131. ZHAO L Z, PENG A B, LI J, et al. The responsive analysis about MHD generator armature of liquid metal[J]. Transactions of China Electrotechnical Society, 2015, 30(17):127-131.
|
[6] |
PRINS M W J, WELTERS W J J, WEEKAMP J W. Fluid control in multichannel structures by electrocapillary pressure[J]. Science, 2001, 291(5502):277-280.
|
[7] |
TANG S-Y, SIVAN V, KHOSHMANESH K, et al. Electrochemically induced actuation of liquid metal marbles[J]. Nanoscale, 2013, 5(16):5949-5957.
|
[8] |
DICKEY M D. Eutectic gallium-indium (EGaIn):a liquid metal alloy for theformation of stable structures in microchannels at room temperature[J]. Adv. Funct. Mater., 2008, 18(14):1097-1104.
|
[9] |
KRUPENKIN T, TAYLOR J A. Reverse electrowetting as a new approach to high-power energy harvesting[J]. Nat. Commun., 2011, 2(34):448-453.
|
[10] |
BAUER S. 25th anniversary article:a soft future:from robots and sensor skin to energy harvesters[J]. Adv. Mater., 2014, 26(1):149-161.
|
[11] |
RASHED KHAN M, HAYES G J, SO J-H, et al. A frequency shifting liquid metal antenna with pressure responsiveness[J]. Appl. Phys. Lett., 2011, 9(15):13-17.
|
[12] |
周子民, 杨怀, M. Lamvik, 等. 伍德合金相变过程中固、液相熔点热导率的测定[J].工程热物理学报, 2000, 21(1):89-92. ZHOU Z M, YANG H, LAMVIK M, et al. Determination of thermal conductivity of Wood's metal at melting point during phase transition[J]. Journal of Engineering Thermophysics, 2000, 21(1):89-92.
|
[13] |
郭丽君, 祖方遒, 朱震刚. 以内耗技术探索Pb-Sn合金熔体的结构变化[J]. 物理学报, 2002, 51(2):300-304. GUO L J, ZU F Q, ZHU Z G. With internal friction technique to explore the change of Pb-Sn alloy melt structure[J]. Acta Physica Sinica, 2002, 51(2):300-304.
|
[14] |
章应辉. 不同标态下标准电极电势间关系的热力学解释[J]. 大学化学, 2015, 23(3):66-71. ZHANG Y H. The relationship about the standard electrode potential under different standard state of thermodynamics explanation[J]. University Chemistry, 2015, 23(3):66-71.
|
[15] |
MUMCU G, DEY A, PALOMO T. Frequency-agile bandpass filters using liquid metal tunable broadside coupled split ring resonators[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(4):187-189.
|
[16] |
SO J-H, THELEN J, QUSBA A, et al. Reversibly deformable and mechanically tunable fluidic antennas[J]. Adv. Funct. Mater., 2009, 19:3632-3637.
|
[17] |
CUMBY B L. Reconfigurable liquid metal circuits by Laplace pressureshaping[J]. Appl. Phys. Lett., 2012, 101(17):410-413.
|
[18] |
YUAN B, TAN S C, ZHOU Y X, et al. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors[J]. Science Bulletin, 2015, 60(13):1203-1210.
|
[19] |
CADEMARTIRI L. Electrical resistance of Ag-TS-S(CH2)(n-1)CH3//Ga2O3/Egaln tunneling junctions[J]. J. Phys. Chem. C, 2012, 116:10848-10860.
|
[20] |
ROGERS J A, SOMEYA T, HUANG Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973):1603-1607.
|
[21] |
王胜天, 秦玉华, 翟剩勇, 等.阳极氧化铝膜修饰的杂多酸-聚吡咯纳米粒子玻碳电极的电化学性质研究[J]. 高等学校化学学报, 2004, 25(5):841-843. WANG S T, QING Y H, CUI S Y, et al. Anodic alumina membrane modified heteropoly acid-polypyrrole nanoparticles of glassy carbon electrode electrochemical properties[J]. Chemical Journal of Chinese Universities, 2004, 25(5):841-843.
|
[22] |
SCHURIG D. Metamaterial electromagnetic cloak at micro wave frequencies[J]. Science., 2006, 314(5801):977-980.
|
[23] |
MONAT C, DOMACHUK P, EGGLETON B J. Integrated optofluidics:a new river of light[J]. Science, 2007, 23(2):362-367.
|
[24] |
MASSALSKI T B. Binary Alloy Phase Diagram (CD-ROM)[M]. ASM International, 1996.
|
[25] |
杨贞, 卡托普利. 在汞电极表面的电化学行为[J]. 分析化学, 1999, 27(12):1431-1435. YANG Z, KATUPRL. The surface of mercury electrode electrochemical behavior[J]. Chinese Journal of Analytical Chemistry, 1999, 27(12):1431-1435.
|
[26] |
JACKEL J L, HACKWOOD S, VESELKA J J, et al. Electrowetting switch for multimode optical fibers[J]. Appl. Opt., 1983, 22:1765-1770.
|
[27] |
LIPPMANN. Relation entre les phenomenes electriques et capillaires[J]. Annales de Chimie et de Physique, 1875, 5:494-549.
|
[28] |
REGAN M J. X-ray study of the oxidation of liquid-gallium surfaces[J]. Phys. Rev. B Condens. F. Matter., 1997, 55:10786-10790.
|
[29] |
VANCAUWENBERGHE V, DI MARCO P, BRUTIN D. Wetting and evaporation of a sessile drop under an external electrical field:a review[J]. Colloids Surf., 2013, 4(32):50-56.
|
[30] |
WANG L, LIU J. Electromagnetic rotation of a liquid metal sphere or pool within a solution[J]. Proceedings of the Royal Society of London A:Mathematical Physical and Engineering Sciences, 2015, 14(4):71-76.
|
[31] |
GOUGH R C, MORISHITA A M, DANG J H, et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention[J]. Micro and Nano Systems Letters, 2015, 3:1-9.
|