化工学报 ›› 2018, Vol. 69 ›› Issue (1): 1-8.DOI: 10.11949/j.issn.0438-1157.20171495
陆小华, 蒋管聪, 朱育丹, 冯新, 吕玲红
收稿日期:
2017-11-09
修回日期:
2017-12-11
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
陆小华, 朱育丹
基金资助:
国家自然科学基金项目(21490584,21676137,21428601);青蓝工程;江苏省自然科学基金面上项目(BK20171464);江苏高校优势学科建设工程项目。
LU Xiaohua, JIANG Guancong, ZHU Yudan, FENG Xin, LÜ Linghong
Received:
2017-11-09
Revised:
2017-12-11
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171495
Supported by:
supported by the National Natural Science Foundation of China (21490584, 21676137, 21428601), the Qinglan Project,the Natural Science Foundation of Jiangsu Province (BK20171464) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
摘要:
纳米受限界面处的流体由于受到界面性质的影响显著,且存在复杂的传递和反应机制耦合问题,其流体分子行为难以调控,成为了现代化工新技术(如膜过程、多相催化)突破的瓶颈。结合了近几年本课题组的相关工作进展,以化学性质稳定的高比表面氧化钛作为研究平台,对界面处流体分子受限行为进行分析,研究了传递和反应机制分别对界面处流体行为的影响,并探索其调控机制;同时对建立的相应分子热力学模型进行了初步探索,通过原子力显微镜技术将界面摩擦性质和分子间相互作用关联,为分子热力学模型提供分子参数。
中图分类号:
陆小华, 蒋管聪, 朱育丹, 冯新, 吕玲红. 受限界面处流体分子行为的调控及相关分子热力学模型初探:基于高比表面氧化钛的研究进展[J]. 化工学报, 2018, 69(1): 1-8.
LU Xiaohua, JIANG Guancong, ZHU Yudan, FENG Xin, LÜ Linghong. Preliminary study on controlling nanoconfined fluid behavior and modelling molecular thermodynamics: progress in development of high-specific surface area TiO2[J]. CIESC Journal, 2018, 69(1): 1-8.
[1] | 朱育丹, 陆小华, 郭晓静, 等. 材料化学工程科学内涵及方法初探:从介观尺度界面流体行为出发认知材料[J]. 化工学报, 2013, 64(1):148-154. ZHU Y D, LU X H, GUO X J, et al. Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering:understanding material based on confined interfacial fluid behavior on mesoscale[J]. CIESC Journal, 2013, 64(1):148-154. |
[2] | ERTL G. Dynamics of reactions at surfaces[J]. Advances in Catalysis, 2000, 45(2):1-69. |
[3] | VINCENT R S, LINDSTEDT R P, MALIK N A, et al. The chemistry of ethane dehydrogenation over a supported platinum catalyst[J]. Journal of Catalysis, 2008, 260(1):37-64. |
[4] | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530. |
[5] | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62:223-232. ZHU Y D, LU X H, XIE W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62:223-232. |
[6] | HE M, LU X H, FENG X, et al. A simple approach to mesoporous fibrous titania from potassium dititanate[J]. Chemical Communications, 2004, 10(19):2202-2203. |
[7] | LI W, BAI Y, LIU C, et al. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis[J]. Environmental Science & Technology, 2009, 43(14):5423-5428. |
[8] | 陈闪山, 朱银华, 李伟, 等. 含TiO2(B)介孔氧化钛材料的制备、特性和应用[J]. 催化学报, 2010, 31(6):605-614. CHEN S S, ZHU Y H, LI W, et al. Synthesis, features, and applications of mesoporous titania with TiO2(B)[J]. Chinese Journal of Catalysis, 2010, 31(6):605-614. |
[9] | 魏明杰, 邵庆, 吕玲红, 等. 二氧化钛材料微观结构与应用性能的联系[J]. 化工学报, 2008, 59(8):1907-1913. WEI M J, SHAO Q, LÜ L H, et al. Relationship between micro-structure and properties of titania[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(8):1907-1913. |
[10] | LI W, BAI Y, LIU W, et al. Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties[J]. Journal of Materials Chemistry, 2011, 21(18):6718-6724. |
[11] | BAI Y, LI W, LIU C, et al. Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture[J]. Journal of Materials Chemistry, 2009, 19(38):7055-7061. |
[12] | BAI Y, ZHANG Y, LI W, et al. Nanopatterned surface with adjustable area coverage and feature size fabricated by photocatalysis[J]. Applied Surface Science, 2009, 255(22):9296-9300. |
[13] | 庄伟, 吕玲红, 邬新兵,等. K2Ti4O9制备TiO2-B纤维快速嵌锂负极材料[J]. 化工学报, 2013, 64(1):374-380. ZHUANG W, LÜ L H, WU X B, et al. TiO2-B fibres derived K2Ti4O9 as fast lithium intercalation negativer material[J]. CIESC Journal, 2013, 64(1):374-380. |
[14] | CHEN X, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 38(41):2891-2959. |
[15] | JR E M, ZOTIN J L, ABREU M A S D, et al. Characterization and hydrotreating performance of NiMo catalysts supported on nanostructured titanate[J]. Applied Catalysis A General, 2009, 357(2):142-149. |
[16] | 汪怀远, 朱友庄, 赵景岩, 等. TiO2载体特性对二苯并噻吩加氢脱硫性能的影响[J]. 化工学报, 2013, 64(7):2462-2467. WANG H Y, ZHU Y Z, ZHAO J Y, et al. Effect of characteristics of TiO2 carrier on performance of dibenzothiophene hydrodesulfurization[J]. CIESC Journal, 2013, 64(7):2462-2647. |
[17] | 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京:科学出版社, 2004. XU R R, PANG W Q. Chemistry-Zeolites and Porous Materials[M]. Beijing:Science Press, 2004. |
[18] | LI Q, WANG X, LU X H, et al. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers[J]. Biomaterials, 2009, 30(27):4708-4715. |
[19] | ZHU Y, ZHOU J, LU X H, et al. Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications[J]. Microfluidics & Nanofluidics, 2013, 15(2):191-205. |
[20] | FU Q, LI W, YAO Y, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982):1141-1144. |
[21] | HOLT J K, PARK H G, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. |
[22] | 徐俊波, 汪宇莹, 杨超. 纳米受限流体的结构及流体动力学特性[J].化工学报, 2015, 67(1):209-217. XU J B, WANG Y Y, YANG C. Structure and hydrodynamics characteristics of fluids under nano-confinement[J]. CIESC Journal, 2015, 67(1):209-217. |
[23] | FU Q, BAO X. Surface chemistry and catalysis confined under two-dimensional materials[J]. Chemical Society Reviews, 2017, 46(7):1842-1874. |
[24] | KUZMINA M, HERBIG M, PONGE D, et al. Linear complexions:confined chemical and structural states at dislocations[J]. Science, 2015, 349(6252):1080-1083. |
[25] | ROUDET M, BILLET A M, CAZIN S, et al. Experimental investigation of interfacial mass transfer mechanisms for a confined high-Reynolds-number bubble rising in a thin gap[J]. AIChE Journal, 2017, 63(6):2394-2408. |
[26] | KCHLER A, YOSHIMOTO M, LUGINB HL S, et al. Enzymatic reactions in confined environments[J]. Nature Nanotechnology, 2016, 11(5):409-420. |
[27] | 朱育丹, 邬新兵, 陆小华, 等. 基于分子间相互作用的纳米尺度分子传递[J]. 中国科学:化学, 2014, 44(9):1423-1430. ZHU Y D, WU X B, LU X H, et al. Nanoscale molecular transfer based on intermolecular interactions[J]. Scientia Sinica Chemica, 2014, 44(9):1423-1430. |
[28] | NAPOLITANO S, GLYNOS E, TITO N B. Glass transition of polymers in bulk, confined geometries, and near interfaces[J]. Reports on Progress in Physics, 2017, 80(3):036602. |
[29] | LI J H. Exploring the logic and landscape of the knowledge system:multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3):276-285. |
[30] | CORMA A. Cheminform abstract:from microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews, 1997, 97(6):2373-2420. |
[31] | CHEN Y, JIANG Y, LI W, et al. Adsorption and interaction of H2S/SO2 on TiO2[J]. Catalysis Today, 1999, 50(1):39-47. |
[32] | HUANG W F, CHEN H T, LIN M C. Density functional theory study of the adsorption and reaction of H2S on TiO2 rutile (110) and anatase (101) surfaces[J]. Journal of Physical Chemistry C, 2009, 113(47):20411-20420. |
[33] | 王昌松, 魏明杰, 吕玲红, 等. 化学非均一表面及其在化工中的应用[J]. 化工学报, 2009, 60(12):2945-2951. WANG C S, WEI M J, LÜ L H, et al. Chemical heterogeneous surface and its applications in chemical engineering[J]. CIESC Journal, 2009, 60(12):2945-2951. |
[34] | WEI M J, ZHOU J, LU X H, et al. Diffusion of water molecules confined in slits of rutile TiO2(1;1;0) and graphite(0;0;0;1)[J]. Fluid Phase Equilibria, 2011, 302(1):316-320. |
[35] | 魏明杰, 吕玲红, 朱育丹, 等. 提高二氧化钛孔道中水分子扩散性的分子模拟[J]. 化工学报, 2013, 64(1):365-373. WEI M J, LÜ L H, ZHU Y D, et al. Improving diffusion of water molecules in slits of titanium dioxide:molecular dynamics simulation[J]. CIESC Journal, 2013, 64(1):365-373. |
[36] | WEI M J, ZHANG L, LU L H, et al. Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon:a molecular dynamics simulation study[J]. Physical Chemistry Chemical Physics, 2012, 14(48):16536-16543. |
[37] | LI L, ZHU Y D, LU X H, et al. Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance[J]. Chemical Communications, 2012, 48(94):11525-11527. |
[38] | 于剑昆, 李中, 赵晓东. 氢氧直接合成过氧化氢技术的工业化概况[J]. 化学推进剂与高分子材料, 2015, 13(6):14-23. YU J K, LI Z, ZHAO X D. Industrialization of hydrogen peroxide direct synthesis of hydrogen peroxide[J]. Chemical Propellants & Polymeric Materials, 2015, 13(6):14-23. |
[39] | CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis:an outlook beyond the anthraquinone process[J]. Angewandte Chemie, 2006, 45(42):6962-6984. |
[40] | TU R, LI L C, ZHANG S Y, et al. Carbon-modified mesoporous anatase/TiO2(B) whisker for enhanced activity in direct synthesis of hydrogen peroxide by palladium[J]. Catalysts, 2017, 7(6):175-183. |
[41] | TU R, CHEN S, CAO W, et al. The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst[J]. Catalysis Communications, 2017, 89:69-72. |
[42] | SHANNON M S, BARA J E. Reactive and reversible ionic liquids for CO2 capture and acid gas removal[J]. Separation Science & Technology, 2012, 47(2):178-188. |
[43] | PARHI P K. Supported liquid membrane principle and its practices:a short review[J]. Journal of Chemistry,2013, 2013(6):618236. |
[44] | JI X, CHEN D, WEI T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24):7017-7024. |
[45] | 陆小华. 材料化学工程中的热力学与分子模拟研究[M]. 北京:科学出版社, 2011:78. LU X H. Thermodynamics and Molecular Modeling in Chemical Engineering of Materials[M]. Beijing:Science Press, 2011:78. |
[46] | 陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学:化学, 2011, 41(9):1540-1547. LU X H, JI Y H, LIU H L. Application of nonequilibrium thermodynamics in interfacial transfer process[J]. Scientia Sinica Chemica, 2011, 41(9):1540-1547. |
[47] | XIE W, JI X, FENG X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids:theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12):4437-4444. |
[48] | XIE W, JI X, FENG X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids:effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2016, 55(1):366-372. |
[49] | FAN T, XIE W, JI X, et al. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective[Choline] [Pro]/PEG200 mixtures[J]. Chinese Journal of Chemical Engineering, 2016, 24(11):1513-1521. |
[50] | PERA-TITUS M, MIACHON S, DALMON J A. Increased gas solubility in nanoliquids:improved performance in interfacial catalytic membrane contactors[J]. AIChE Journal, 2010, 55(2):434-441. |
[51] | PERA-TITUS M, EL-CHAHAL R, RAKOTOVAO V, et al. Direct volumetric measurement of gas oversolubility in nanoliquids:beyond Henry's law[J]. Chemphyschem, 2009, 10(12):2082-2089. |
[52] | BUFFAT P, BOREL J P. Size effect on the melting temperature of gold particles[J]. Physical Review A, 1976, 13(6):2287-2298. |
[53] | LAI S L, CARLSSON J R A, ALLEN L H. Melting point depression of Al clusters generated during the early stages of film growth:nanocalorimetry measurements[J]. Applied Physics Letters, 1998, 72(9):1098-1100. |
[54] | LEE J, TANAKA T, LEE J, et al. Effect of substrates on the melting temperature of gold nanoparticles[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2007, 31(1):105-111. |
[55] | KIM E H, LEE B J. Size dependency of melting point of crystalline nano particles and nano wires:a thermodynamic modeling[J]. Metals & Materials International, 2009, 15(4):531-537. |
[56] | DING F, ROSEN A, CURTAROLO S, et al. Modeling the melting of supported clusters[J]. Applied Physics Letters, 2006, 88(13):013208. |
[57] | SHIBUTA Y, SUZUKI T. Effect of wettability on phase transition in substrate-supported bcc-metal nanoparticles:a molecular dynamics study[J]. Chemical Physics Letters, 2010, 486(4/5/6):137-143. |
[58] | COASNE B, CZWARTOS J, SLIWINSKA-BARTKOWIAK M, et al. Freezing of mixtures confined in silica nanopores:experiment and molecular simulation[J]. Journal of Chemical Physics, 2010, 133(8):084701. |
[59] | CZWARTOS J, SLIWINSKABARTKOWIAK M, COASNE B, et al. Melting of mixtures in silica nanopores[J]. Pure & Applied Chemistry, 2009, 81(10):1953-1959. |
[60] | GUBBINS K E, LONG Y, ?LIWINSKA-BARTKOWIAK M. Thermodynamics of confined nano-phases[J]. Journal of Chemical Thermodynamics, 2014, 74(7):169-183. |
[61] | KAPTAY G. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(3):2625-2633. |
[62] | RADHAKRISHNAN R, GUBBINS K E, SLIWINSKABARTKOWIAK M. Effect of the fluid-wall interaction on freezing of confined fluids:toward the development of a global phase diagram[J]. Journal of Chemical Physics, 2000, 112(24):11048-11057. |
[63] | WU N, JI X, AN R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10):4595-4603. |
[64] | WU N, JI X, XIE W, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42):11719-11726. |
[65] | MORITA S, GIESSIBL F J, WIESENDANGER R. Noncontact Atomic Force Microscopy[M]. Berlin:Springer Berlin Heidelberg, 2009:247-255. |
[66] | CHEN M, BRISCOE W H, ARMES S P, et al. Lubrication at physiological pressures by polyzwitterionic brushes[J]. Science, 2009, 323(5922):1698-1701. |
[67] | BHUSHAN B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices[J]. Microelectronic Engineering, 2007, 84(3):387-412. |
[68] | BHUSHAN B. Nanotribology and Nanomechanics[M]. Berlin:Springer Berlin Heidelberg, 2005:1507-1531. |
[69] | AN R, ZHU Y, WU N, et al. Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2692-2698. |
[70] | AN R, HUANG L, LONG Y, et al. Liquid-solid nanofriction and interfacial wetting[J]. Langmuir, 2016, 32(3):743-750. |
[71] | AN R, HUANG L, MINEART K P, et al. Adhesion and friction in polymer films on solid substrates:conformal sites analysis and corresponding surface measurements[J]. Soft Matter, 2017, 13(19):3492. |
[72] | DONG Y, AN R, ZHAO S, et al. Molecular interactions of protein with TiO2 by AFM measured adhesion force[J]. Langmuir, 2017, 33(42):11626-11634. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[10] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[11] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[12] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||