化工学报 ›› 2018, Vol. 69 ›› Issue (1): 188-202.DOI: 10.11949/j.issn.0438-1157.20171142
陈霞1,2, 蒋晨啸1, 汪耀明1, 徐铜文1
收稿日期:
2017-08-20
修回日期:
2017-11-01
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
徐铜文
基金资助:
国际伙伴计划-一带一路项目(21134ky5b20170010);国家自然科学基金项目(21490581)。
CHEN Xia1,2, JIANG Chenxiao1, WANG Yaoming1, XU Tongwen1
Received:
2017-08-20
Revised:
2017-11-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171142
Supported by:
supported by the International Partnership Program of Chinese Academy of Sciences (21134ky5b20170010) and the National Natural Science Foundation of China (21490581).
摘要:
反向电渗析作为一种利用盐差产能工艺,具有清洁、可持续、无污染、能量密度高等优点。以反向电渗析的结构组成、产能机理及影响因素为出发点,结合全球所面临的能源短缺和环境污染的重大问题,介绍了反向电渗析工艺在能源和环境保护领域的新应用和新进展;针对反向电渗析的单一操作、与其他技术的内集成和外集成操作进行了介绍与总结,并对其进行了初步分析和评述,以期为以后的研究工作提供参考。
中图分类号:
陈霞, 蒋晨啸, 汪耀明, 徐铜文. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202.
CHEN Xia, JIANG Chenxiao, WANG Yaoming, XU Tongwen. Advances in reverse electrodialysis and its applications on renewable energy & environment protection[J]. CIESC Journal, 2018, 69(1): 188-202.
[1] | POST J W, VEERMAN J, HAMELERS H V M, et al. Salinity-gradient power:evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. J. Memb. Sci., 2007, 288:218-230. |
[2] | 纪娟, 胡以怀, 贾靖. 海水盐差发电技术的研究进展[J]. 能源技术, 2007, 28(6):336-338. JI J, HU Y H, JIA J. Proposal for electrical power generation with sea water salinity-gradient[J]. Energ. Technol., 2007, 28(6):336-338. |
[3] | 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015, 66(5):1919-1924. DENG H N, TIAN M, YANG X L, et al. Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J]. CIESC Journal, 2015, 66(5):1919-1924. |
[4] | YIP N Y, ELIMELECH M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis[J]. Environ. Sci. Technol., 2012, 46:5230-5239. |
[5] | LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488:313-319. |
[6] | POST J W, HAMELERS H V M, BUISMAN C N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environ. Sci. Technol., 2008, 42:5785-5790. |
[7] | YIP N Y, VERMAAS D A, NIJMEIJER K, et al. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients[J]. Environ. Sci. Technol., 2014, 48:4925-4936. |
[8] | PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174:660-660. |
[9] | BRAUNS E. Salinity gradient power by reverse electrodialysis:effect of model parameters on electrical power output[J]. Desalination, 2009, 237:378-391. |
[10] | VEERMAN J, SAAKES M, METZ S J, et al. Reverse electrodialysis:a validated process model for design and optimization[J]. Chem. Eng. J., 2011, 166:256-268. |
[11] | GEISE G M, CURTIS A J, HATZELL M C, et al. Salt concentration differences alter membrane resistance in reverse electrodialysis stacks[J]. Environ. Sci. Tech. Let., 2014, 1:36-39. |
[12] | 杜瑞奎, 高保娇, 李彦斌, 等, 聚砜阴离子交换膜的制备及结构与性能研究[J]. 高分子学报, 2010, 7:924-931. DU R K, GAO B J, LI Y B, et al. Preparation and structure/property relationship of polysulfone anion-exchange membranes[J]. Acta Polymerica Sinica, 2010, 7:924-931. |
[13] | GÜLER E, ELIZEN R, VERMAAS D A, et al. Performance-determining membrane properties in reverse electrodialysis[J]. J. Memb. Sci., 2013, 446:266-276. |
[14] | KIM H K, LEE M S, LEE S Y, et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer[J]. J. Mater. Chem. A, 2015, 3:16302-16306. |
[15] | HONG J G, CHEN Y. Nanocomposite reverse electrodialysis(RED) ion-exchange membranes for salinity gradient power generation[J]. J. Memb. Sci., 2014, 460:139-147. |
[16] | HONG J G, ZHANG B, GLABMAN S, et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation:a review[J]. J. Memb. Sci., 2015, 486:71-88. |
[17] | PAWLOWSKI S, RIJNAARTS T, SAAKES M, et al. Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes[J]. J. Memb. Sci., 2017, 531:111-121. |
[18] | GULER E, BAAK W V, SAAKES M, et al. Monovalent-ion-selective membranes for reverse electrodialysis[J]. J. Memb. Sci., 2014, 455:254-270. |
[19] | CUSICK R D, HATZELL M, ZHANG F, et al. Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells[J]. Environ. Sci. Technol., 2013, 47:14518-14524. |
[20] | ROLAND Y K, CUSICK D, LOGAN B E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells[J]. Science, 2012, 335:1474-1477. |
[21] | ZHU X P, HE W, LOGAN B E. Influence of solution concentration and salt types on the performance of reverse electrodialysis cells[J]. J. Memb. Sci., 2015, 494:154-160. |
[22] | LUO X, CAO X X, MO Y, et al. Power generation by coupling reverse electrodialysis and ammonium bicarbonate:implication for recovery of waste heat[J]. Electrochem. Commun., 2012, 19:25-28. |
[23] | 罗希, 梁鹏, 曹效鑫, 等. 碳酸氢铵-反向电渗析模块构型研究[J]. 膜科学与技术, 2013, 33(6):6-12. LUO X, LIANG P, CAO X X, et al. The configuration of reverse electrodialysis stacks utilizing ammonium bicarbonate solutions[J]. Memb. Sci. Technol., 2013, 33(6):6-12. |
[24] | AVCI A H, SARKAR P, TUFA R A, et al. Effect of Mg2+ ions on energy generation by reverse electrodialysis[J]. J. Memb. Sci., 2016, 520:499-506. |
[25] | POST J W, HAMELERS H V M, BUISMAN C J N. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system[J]. J. Memb. Sci., 2009, 330:65-72. |
[26] | VERMAAS D A, KUNTENG D, SAAKES M, et al. Fouling in reverse electrodialysis under natural conditions[J]. Water Res., 2013, 47:1289-1298. |
[27] | VASELBEHAGH M, KARKHANECHI H, AKAGIR T, et al. Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process[J]. J. Memb. Sci., 2017, 530:232-239. |
[28] | VERMAAS D A, KUNTENG D, VEERMAN J, et al. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis[J]. Environ. Sci. Technol., 2014, 48:3065-3073. |
[29] | TEDESCO M, CIPOLLINA A, TAMBURINI A, et al. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines[J]. Chem. Eng. Res. Des., 2015, 93:441-456. |
[30] | DANⅡLIDIS A, VERMAAS D A, HERBER R, et al. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis[J]. Renew. Energ., 2014, 64:123-131. |
[31] | ZHU X P, HE W, LOGAN B E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells[J]. J. Memb. Sci., 2015, 486:215-221. |
[32] | GURRERI L, TAMBURINI A, CIPOLLINA A, et al. CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis[J]. J. Memb. Sci., 2014, 468:133-148. |
[33] | BURHEIM O S, SELAND F, PHAROAH J G, et al. Improved electrode systems for reverse electro-dialysis and electro-dialysis[J]. Desalination, 2012, 285:147-152. |
[34] | VEERMAN J, SAAKES M, METZ S J, et al. Reverse electrodialysis:evaluation of suitable electrode systems[J]. J. Appl. Electrochem., 2010, 40:1461-1474. |
[35] | SCIALDONE O, ALBANESE A, D'ANGELO A, et al. Investigation of electrode material-redox couple systems for reverse electrodialysis processes(Ⅱ):Experiments in a stack with 10-50 cell pairs[J]. J. Electroanal. Chem., 2013, 704:1-9. |
[36] | SCIALDONE O, GUARISCO C, GRISPO S, et al. Investigation of electrode material-redox couple systems for reverse electrodialysis processes(Ⅰ):Iron redox couples[J]. J. Electroanal. Chem., 2012, 681:66-75. |
[37] | VERMAAS D A, SAAKES M, NIJMEIJER K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environ. Sci. Technol., 2011, 45:7089-7095. |
[38] | D?UGO??CKI P, D?BROWSKA J, NIJMEIJER K, et al. Ion conductive spacers for increased power generation in reverse electrodialysis[J]. J. Memb. Sci., 2010, 347:101-107. |
[39] | VERMAAS D A, SAAKES M, NIJMEIJER K. Power generation using profiled membranes in reverse electrodialysis[J]. J. Memb. Sci., 2011, 385/386:234-242. |
[40] | GURRERI L, TAMBURINI A, CIPOLLINA A, et al. Flow and mass transfer in spacer-filled channels for reverse electrodialysis:a CFD parametrical study[J]. J. Memb. Sci., 2016, 497:300-317. |
[41] | WEINSTEIN J N, LEITZ F B. Electric-power from difference in salinity-dialytic battery[J]. Science, 1976, 191:557-559. |
[42] | LACEY R E. Energy by reverse electrodialysis[J]. Ocean Eng., 1980, 7:1-47. |
[43] | TEDESCO M, BRAUNS E, CIPOLLINA A, et al. Reverse electrodialysis with saline waters and concentrated brines:a laboratory investigation towards technology scale-up[J]. J. Memb. Sci., 2015, 492:9-20. |
[44] | TEDESCO M, SCALICI C, VACCARI D, et al. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J]. J. Memb. Sci., 2016, 500:33-45. |
[45] | TEDESCO M, CIPOLLINA A, TAMBURINI A, et al. Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J]. J. Memb. Sci., 2017, 522:226-236. |
[46] | CHRISTOPHER K, DIMITRIOS R. A review on exergy comparison of hydrogen production methods from renewable energy sources[J]. Energ. Environ. Sci., 2012, 5:6640-6651. |
[47] | TUFA R A, RUGIERO E, CHANDA D, et al. Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production[J]. J. Memb. Sci., 2016, 514:155-164. |
[48] | HATZELL M C, IVANOV I, CUSICK R D, et al. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems[J]. Phys. Chem. Chem. Phys., 2014, 16:1632-1638. |
[49] | HATZELL M C, ZHU X, LOGAN B E. Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system[J]. ACS Sustain. Chem. Eng., 2014, 2:2211-2216. |
[50] | CHEN X, JIANG C, ZHANG Y, et al. Storable hydrogen production by reverse electro-electrodialysis(REED)[J]. J. Memb. Sci., 2017, 544:397-405. |
[51] | SCIALDONE O, D'AAGELO A, LUME E D, et al. Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients[J]. Electro. Acta, 2014, 137:258-265. |
[52] | SCIALDONE O, D'AAGELO A, GALIA A. Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients[J]. J. Electroanal. Chem., 2015, 738:61-68. |
[53] | GRODZINSKI J J, KRAMER R. Novel process for direct conversion of free energy of mixing into electric power[J]. Ind. Eng. Chem. Process Des. Dev., 1986, 25:443-449. |
[54] | TUREK M, BANDURA B. Renewable energy by reverse electrodialysis[J]. Desalination, 2007, 205:67-74. |
[55] | VEERMAN J, SAAKES M, METZ S J, et al. Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water[J]. J. Memb. Sci., 2009, 327:136-144. |
[56] | AUDINOS R. Electrodialyse inverse. Etude de l'energie electrique obtenue a partir de deux solutions de salinites differentes[J]. J. Power Sources, 1983, 10(3):203-217. |
[57] | TUREK M, BANDURA B, DYDO P. Power production from coal-mine brine utilizing reversed electrodialysis[J]. Desalination, 2008, 221:462-466. |
[58] | TUFA R A, CURCIO E, BAAK W V, et al. Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis(SGP-RE)[J]. RSC Adv., 2014, 4:42617-42623. |
[59] | LUO F B, WANG Y M, JIANG C X, et al. A power free electrodialysis(PFED) for desalination[J]. Desalination, 2017, 404:138-146. |
[60] | WANG Q, GAO X X, ZHANG Y, et al. Hybrid RED/ED system:simultaneous osmotic energy recovery and desalination of high-salinity wastewater[J]. Desalination, 2017, 405:59-67. |
[61] | LI W, KRANTZ W B, CORNELISSEN E R, et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management[J]. Appl. Energ., 2013, 104:592-602. |
[62] | ZHU X P, KIM T, RAHIMI M, et al. Integrating reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradients and energy storage[J]. ChemSusChem, 2017, 10:797-803. |
[63] | LONG R, LI B, LIU Z, et al. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy[J]. J. Memb. Sci., 2017, 525:107-115. |
[64] | TUFA R A, CURCIO E, BRAUNS E, et al. Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination[J]. J. Memb. Sci., 2015, 496:325-333. |
[65] | KIM Y, LOGAN B E. Microbial reverse electrodialysis cells for synergistically enhanced power production[J]. Environ. Sci. Technol., 2011, 45:5834-5839. |
[66] | KIM Y, LOGAN B E. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells[J]. P. Natl. Acad. Sci. USA, 2011, 108:16176-16181. |
[67] | NAM J Y, CUSICK R D, KIM Y, et al. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution[J]. Environ. Sci. Technol., 2012, 46:5240-5246. |
[68] | LUO X, NAM J Y, ZHANG F, et al. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions[J]. Bioresource Technol., 2013, 140:399-405. |
[69] | D'ANGELO A, GALIA A, SCIALDONE O. Cathodic abatement of Cr(Ⅵ) in water by microbial reverse-electrodialysis cells[J]. J. Electroanal. Chem., 2015, 748:40-46. |
[70] | ZHU X, HATZELL M C, CUSICK R D, et al. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production[J]. Electrochem. Commun., 2013, 31:52-55. |
[71] | ZHU X, HATZELL M C, LOGAN B E. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration[J]. Environ. Sci. Tech. Let., 2014, 1:231-235. |
[72] | CHEN Q, LIU Y Y, XUE C, et al. Energy self-sufficient desalination stack as a potential fresh water supply on small islands[J]. Desalination, 2015, 359:52-58. |
[73] | KIM T, LOGAN B E, GORSKI C A. High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell[J]. Energy Environ. Sci., 2017, 10:1003-1012. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[10] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[11] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[12] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||