化工学报 ›› 2018, Vol. 69 ›› Issue (1): 405-413.DOI: 10.11949/j.issn.0438-1157.20170727
岳源源1, 郑晓桂1, 康颖1, 白正帅1, 袁珮1, 朱海波1, 鲍晓军1,2
收稿日期:
2017-06-05
修回日期:
2017-08-02
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
鲍晓军
基金资助:
国家自然科学基金联合基金项目(U1462203);国家自然科学基金青年基金项目(21506034)。
YUE Yuanyuan1, ZHENG Xiaogui1, KANG Ying1, BAI Zhengshuai1, YUAN Pei1, ZHU Haibo1, BAO Xiaojun1,2
Received:
2017-06-05
Revised:
2017-08-02
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170727
Supported by:
supported by the Joint Funds of the National Natural Science Foundation of China(U1462203) and the Young Scientists Fund of the National Natural Science Foundation of China (21506034).
摘要:
生产低硫或无硫柴油是当今世界范围内清洁燃料发展的趋势,加氢脱硫(HDS)是大规模生产清洁柴油最为有效的技术之一,而研制高活性的HDS催化剂成为该技术的关键。以镁铝水滑石与氧化铝的复合氧化物为载体,通过等体积浸渍法制备了一系列Mo/Al2O3-MgO催化剂,以二苯并噻吩(DBT)的正庚烷溶液为原料,在固定床反应器上评价所得催化剂的HDS活性,考察了不同镁铝比的水滑石、焙烧温度和添加量对催化剂物化性质和催化性能的影响。研究结果表明,镁铝比、焙烧温度和添加量均影响催化剂的酸性、金属还原性、硫化性能和MoS2片晶的堆垛度等,当镁铝摩尔比为3、焙烧温度为800℃、成型时水滑石加入量为10%(质量分数)时,所制备催化剂的HDS活性最高,其脱硫率可达96.2%。这是由于该催化剂的酸性较适宜,活性组分与载体间的相互作用力适中,活性组分更易硫化,有助于提高MoS2片晶的堆垛度进而改善催化剂的HDS性能。
中图分类号:
岳源源, 郑晓桂, 康颖, 白正帅, 袁珮, 朱海波, 鲍晓军. 基于镁铝水滑石的Mo/Al2O3-MgO催化剂制备及其加氢脱硫性能[J]. 化工学报, 2018, 69(1): 405-413.
YUE Yuanyuan, ZHENG Xiaogui, KANG Ying, BAI Zhengshuai, YUAN Pei, ZHU Haibo, BAO Xiaojun. Mo/Al2O3-MgO catalyst preparation from MgAl-hydrotalcite and their hydrogenation desulfurization performance[J]. CIESC Journal, 2018, 69(1): 405-413.
[1] | 李莉. 我国汽柴油质量升级历程及展望[J]. 当代石油石化, 2016, 24(7):23-28. LI L. The course of China's gasoline and diesel quality upgrading and its prospect[J]. Petroleum & Petrochemical Today, 2016, 24(7):23-28. |
[2] | 刘志红, 王豪, 鲍晓军. 提高柴油加氢精制催化剂活性的方法[J]. 化工进展, 2008, 27(2):173-179. LIU Z H, WANG H, BAO X J. Methods for improving the activity of diesel hydrotreatring catalysts[J]. Chemical Industry and Engineering Progress, 2008, 27(2):173-179. |
[3] | TAGUCHI A, SCHÜTH F. Ordered mesoporous materials in catalysis[J]. Microporous & Mesoporous Materials, 2005, 77(1):1-45. |
[4] | BREYSSE M. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today, 2004, 86(z1):5-16. |
[5] | KLICPERA T, ZDRA?IL M. Preparation of high-activity MgO-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts[J]. Journal of Catalysis, 2002, 206(2):314-320. |
[6] | KALU?A L, GULKOVÁ D, VÍT Z, et al. High-activity MgO-supported CoMo hydrodesulfurization catalysts prepared by non-aqueous impregnation[J]. Applied Catalysis B:Environmental, 2015, 162:430-436. |
[7] | TREJO F, RANA M S, ANCHEYTA J. CoMo/MgO-Al2O3 supported catalysts:an alternative approach to prepare HDS catalysts[J]. Catalysis Today, 2008, 130(2/3/4):327-336. |
[8] | SOLÍSCASADOS D, ESCOBAR J, OROZCO I G, et al. Effect of potassium content on the performance of CoMo/Al2O3-MgO-K2O(x) catalysts in hydrodesulfurization of dibenzothiophene[J]. Industrial & Engineering Chemistry Research, 2010, 50(5):2755-2761. |
[9] | WAN D, LIU Y D, XIAO S H, et al. Uptake fluoride from water by caclined Mg-Al-CO3 hydrotalcite:Mg/Al ratio effect on its structure, electrical affinity and adsorptive property[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 469:307-314. |
[10] | ZHAO C Y. Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor[J]. Catalysis Science & Technology, 2015, 5(6):3288-3295. |
[11] | 杨博文, 祝琳华, 司甜, 等. 以催化剂为应用背景的水滑石类插层材料的应用研究进展[J]. 化工科技, 2016, 24(4):72-77. YANG B W, ZHU L H, SI T, et al. Research progress of hydrotalcite-like intercalation materials on the background of catalyst[J]. Science & Technology in Chemical industry, 2016, 24(4):72-77 |
[12] | ARDHAYANTI L I, SANTOSA S J. Synthesis of magnetite-Mg/Al hydrotalcite and its application as adsorbent for navy blue and yellow F3G dyes[J]. Procedia Engineering, 2016, 148:1380-1387. |
[13] | KAI C, GALLUCCI F, PIO G, et al. On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications[J]. Chemical Engineering Journal, 2017, 314:554-569. |
[14] | ZHANG L H, ZHU J, JIANG X R, et al. Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed oxides from layered double hydroxides[J]. Journal of Physics & Chemistry of Solids, 2006, 67(8):1678-1686. |
[15] | LI D L, DING Y Y, WEI X F, et al. Cobalt-aluminum mixed oxides prepared from layered double hydroxides for the total oxidation of benzene[J]. Applied Catalysis A:General, 2015, 507:130-138. |
[16] | 李大塘, 郭军, 沈俭一, 等. 焙烧温度对Mg(Al)O复合物结构和表面酸碱性质影响的研究[J]. 化学物理学报, 2000, 13(2):220-226. LI D T, GUO J, SHEN J Y, et al. Exploration on influence of calcination temperature on structure and surface acidity and basicity of Mg(Al)O composite oxide[J]. Chinese Journal of Chemical Physics, 2000, 13(2):220-226. |
[17] | MI J X, LAN Z X, CHEN J J, et al. MgAl-LDO mixed oxide derived from layered double hydroxide:a potential support for CoMo sulfur-resistant water-gas shift catalyst[J]. Catalysis Communications, 2016, 78:44-47. |
[18] | 张岩, 王继锋, 赵德智, 等. γ-Al2O3载体孔结构及酸性的调变[J]. 石化技术与应用, 2015, 33(4):366-370. ZHANG Y, WANG J F, ZHAO D Z, et al. The modification of pore structure and acidity of γ-Al2O3 support[J]. Petrochemical Technology & Application, 2015, 33(4):366-370. |
[19] | HINNEMANN B, MOSES P G, N RSKOV J K. Recent density functional studies of hydrodesulfurization catalysts:insight into structure and mechanism[J]. Journal of Physics:Condensed Matter, 2008, 20(6):064236. |
[20] | QU L L, ZHANG W P, KOOYMAN P J, et al. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. Journal of Catalysis, 2003, 215(1):7-13. |
[21] | KUMAR M, ABERUAGBA F, GUPTA J K, et al. Temperature-programmed reduction and acidic properties of molybdenum supports on MgO-Al2O3 and their correlation with catalytic activity[J]. Journal of Molecular Catalysis A Chemical, 2004, 213(2):217-223. |
[22] | FAN Y, BAO X J, WANG H, et al. A surfactant-assisted hydrothermal deposition method for preparing highly dispersed W/γ-Al2O3 hydrodenitrogenation catalyst[J]. Journal of Catalysis, 2007, 245(2):477-484. |
[23] | HENSEN E J M, DE BEER V H J, VAN VEEN J A R, et al. A refinement on the notion of Type Ⅰ and Ⅱ(Co)MoS phases in hydrotreating catalysts[J]. Catalysis Letters, 2002, 84(1-2):59-67. |
[24] | QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Applied Surface Science, 2010, 256(11):3413-3417. |
[25] | LIU B, CHAI Y M, LI Y P, et al. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3, catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A:General, 2014, 471:70-79. |
[26] | FAN Y, XIAO H, SHI G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3, ultradeep hydrodesulfurization catalysts[J]. Journal of Catalysis, 2011, 279(1):27-35. |
[27] | HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, et al. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. Journal of Catalysis, 2001, 199(2):224-235. |
[28] | OKAMOTO Y, OCHIAI K, KAWANO M, et al. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization[J]. Journal of Catalysis, 2004, 222(1):143-151. |
[29] | 连奕新, 王会芳, 张元华, 等. 焙烧温度对镁铝复合氧化物载体性能的影响[J]. 石油化工, 2009, 38(6):622-629. LIAN Y X, WANG H F, ZHANG Y H, et al. Effect of calcination temperature on performance of Mg-Al composite oxide support[J]. Petrochemical Technology, 2009, 38(6):622-629. |
[30] | 上官荣昌. 焙烧温度对镁铝水滑石焙烧产物物性影响的研究[J]. 淮阴师范学院学报(自然科学版), 2002, 1(1):67-69. SHANGGUAN R C. Effects of calcine temperature on the thermal stability of calcine product obtained from magnesium-aluminum hydrotalcites[J]. Journal of Huaiyin Teachers College (Natural Science Edition), 2002, 1(1):67-69. |
[31] | TOPS E H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Applied Catalysis A:General, 2007, 322:3-8. |
[32] | HAN W, YUAN P, FAN Y, et al. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor[J]. Journal of Materials Chemistry, 2012, 22(48):25340-53. |
[33] | YUE Y Y, NIU P L, JIANG L L, et al. Acid-modified natural bauxite mineral as a cost-effective and high-efficient catalyst support for slurry-phase hydrocracking of high-temperature coal tar[J]. Energy & Fuels, 2016, 30(11):9203-9. |
[34] | USMAN, YAMAMOTO T, KUBOTA T, et al. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J]. Applied Catalysis A:General, 2007, 328(2):219-25. |
[35] | VAN VEEN J A R, GERKEMA E, VAN DER KRAAN A M, et al. A 57Co Mössbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts[J]. Journal of Catalysis, 1992, 133(1):112-23.[J]. Petroleum & Petrochemical Today, 2016, 24(7):23-28. |
[2] | 刘志红, 王豪, 鲍晓军. 提高柴油加氢精制催化剂活性的方法[J]. 化工进展, 2008, 27(2):173-179. LIU Z H, WANG H, BAO X J. Methods for improving the activity of diesel hydrotreatring catalysts[J]. Chemical Industry and Engineering Progress, 2008, 27(2):173-179. |
[3] | TAGUCHI A, SCHÜTH F. Ordered mesoporous materials in catalysis[J]. Microporous & Mesoporous Materials, 2005, 77(1):1-45. |
[4] | BREYSSE M. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today, 2004, 86(z1):5-16. |
[5] | KLICPERA T, ZDRA?IL M. Preparation of high-activity MgO-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts[J]. Journal of Catalysis, 2002, 206(2):314-320. |
[6] | KALU?A L, GULKOVÁ D, VÍT Z, et al. High-activity MgO-supported CoMo hydrodesulfurization catalysts prepared by non-aqueous impregnation[J]. Applied Catalysis B:Environmental, 2015, 162:430-436. |
[7] | TREJO F, RANA M S, ANCHEYTA J. CoMo/MgO-Al2O3 supported catalysts:An alternative approach to prepare HDS catalysts[J]. Catalysis Today, 2008, 130(2-4):327-336. |
[8] | SOLÍSCASADOS D, ESCOBAR J, OROZCO I G, et al. Effect of potassium content on the performance of CoMo/Al2O3-MgO-K2O(x) catalysts in hydrodesulfurization of dibenzothiophene[J]. Industrial & Engineering Chemistry Research, 2010, 50(5):2755-2761. |
[9] | WAN D, LIU Y D, XIAO S H, et al. Uptake fluoride from water by caclined Mg-Al-CO3 hydrotalcite:Mg/Al ratio effect on its structure, electrical affinity and adsorptive property[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 469:307-314. |
[10] | ZHAO C Y. Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor[J]. Catalysis Science & Technology, 2015, 5(6):3288-3295. |
[11] | 杨博文, 祝琳华, 司甜, 等. 以催化剂为应用背景的水滑石类插层材料的应用研究进展[J]. 化工科技, 2016, 24(4):72-77. YANG B W, ZHU L H, SI T, et al. Research progress of hydrotalcite-like intercalation materials on the background of catalyst[J]. Science & Technology in Chemical industry, 2016, 24(4):72-77 |
[12] | ARDHAYANTI L I, SANTOSA S J. Synthesis of magnetite-Mg/Al hydrotalcite and its application as adsorbent for navy blue and yellow F3G dyes[J]. Procedia Engineering, 2016, 148:1380-1387. |
[13] | KAI C, GALLUCCI F, PIO G, et al. On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications[J]. Chemical Engineering Journal, 2017, 314:554-569. |
[14] | ZHANG L H, ZHU J, JIANG X R, et al. Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed oxides from layered double hydroxides[J]. Journal of Physics & Chemistry of Solids, 2006, 67(8):1678-1686. |
[15] | LI D L, DING Y Y, WEI X F, et al. Cobalt-aluminum mixed oxides prepared from layered double hydroxides for the total oxidation of benzene[J]. Applied Catalysis A:General, 2015, 507:130-138. |
[16] | 李大塘, 郭军, 沈俭一, 等. 焙烧温度对Mg(Al)O复合物结构和表面酸碱性质影响的研究[J]. 化学物理学报, 2000, 13(2):220-226. LI D T, GUO J, Shen J Y, et al. Exploration on influence of calcination temperature on structure and surface acidity and basicity of Mg(Al)O composite oxide[J]. Chinese Journal of Chemical Physics, 2000, 13(2):220-226. |
[17] | MI J X, LAN Z X, CHEN J J, et al. MgAl-LDO mixed oxide derived from layered double hydroxide:A potential support for CoMo sulfur-resistant water-gas shift catalyst[J]. Catalysis Communications, 2016, 78:44-47. |
[18] | 张岩, 王继锋, 赵德智, 等. γ-Al2O3载体孔结构及酸性的调变[J]. 石化技术与应用, 2015, 33(4):366-370. ZHANG Y, WANG J F, ZHAO D Z, et al. The modification of pore structure and acidity of γ-Al2O3 support[J]. Petrochemical Technology & Application, 2015, 33(4):366-370. |
[19] | HINNEMANN B, MOSES P G, N RSKOV J K. Recent density functional studies of hydrodesulfurization catalysts:Insight into structure and mechanism[J]. Journal of Physics:Condensed Matter, 2008, 20(6):064236. |
[20] | QU L L, ZHANG W P, KOOYMAN P J, et al. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. Journal of Catalysis, 2003, 215(1):7-13. |
[21] | KUMAR M, ABERUAGBA F, GUPTA J K, et al. Temperature-programmed reduction and acidic properties of molybdenum supports on MgO-Al2O3 and their correlation with catalytic activity[J]. Journal of Molecular Catalysis A Chemical, 2004, 213(2):217-223. |
[22] | FAN Y, BAO X J, WANG H, et al. A surfactant-assisted hydrothermal deposition method for preparing highly dispersed W/γ-Al2O3 hydrodenitrogenation catalyst[J]. Journal of Catalysis, 2007, 245(2):477-484. |
[23] | HENSEN E J M, DE BEER V H J, VAN VEEN J A R, et al. A refinement on the notion of Type I and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catalysis Letters, 2002, 84(1-2):59-67. |
[24] | QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Applied Surface Science, 2010, 256(11):3413-3417. |
[25] | LIU B, CHAI Y M, LI Y P, et al. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3, catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A:General, 2014, 471:70-79. |
[26] | FAN Y, XIAO H, SHI G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3, ultradeep hydrodesulfurization catalysts[J]. Journal of Catalysis, 2011, 279(1):27-35. |
[27] | HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, et al. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. Journal of Catalysis, 2001, 199(2):224-235. |
[28] | OKAMOTO Y, OCHIAI K, KAWANO M, et al. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization[J]. Journal of Catalysis, 2004, 222(1):143-151. |
[29] | 连奕新, 王会芳, 张元华, 等. 焙烧温度对镁铝复合氧化物载体性能的影响[J]. 石油化工, 2009, 38(6):622-629. LIAN Y X, WANG H F, ZHANG Y H, et al. Effect of calcination temperature on performance of Mg-Al composite oxide support[J]. Petrochemical Technology, 2009, 38(6):622-629. |
[30] | 上官荣昌. 焙烧温度对镁铝水滑石焙烧产物物性影响的研究[J]. 淮阴师范学院学报(自然科学版), 2002, 1(1):67-69. SHANGGUAN R C. Effects of calcine temperature on the thermal stability of calcine product obtained from magnesium-aluminum hydrotalcites[J]. Journal of Huaiyin Teachers College (Natural Science Edition), 2002, 1(1):67-69. |
[31] | TOPS E H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Applied Catalysis A:General, 2007, 322:3-8. |
[32] | HAN W, YUAN P, FAN Y, et al. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor[J]. Journal of Materials Chemistry, 2012, 22(48):25340-53. |
[33] | YUE Y Y, NIU P L, JIANG L L, et al. Acid-modified natural bauxite mineral as a cost-effective and high-efficient catalyst support for slurry-phase hydrocracking of high-temperature coal tar[J]. Energy & Fuels, 2016, 30(11):9203-9. |
[34] | USMAN, YAMAMOTO T, KUBOTA T, et al. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J]. Applied Catalysis A:General, 2007, 328(2):219-25. |
[35] | VAN VEEN J A R, GERKEMA E, VAN DER KRAAN A M, et al. A 57CO Mössbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts[J]. Journal of Catalysis, 1992, 133(1):112-23. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[12] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[13] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||