化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4530-4541.DOI: 10.11949/j.issn.0438-1157.20180514
鲍博1, 赵双良1, 徐建鸿2
收稿日期:
2018-05-15
修回日期:
2018-07-09
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
鲍博
基金资助:
国家自然科学基金项目(21808056)。
BAO Bo1, ZHAO Shuangliang1, XU Jianhong2
Received:
2018-05-15
Revised:
2018-07-09
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21808056).
摘要:
微纳流控技术是在微纳米尺度下研究并检测流体的作用和性质,具有可视化和快速精准等技术优势。在化工热力学研究中,近二十年来逐渐兴起了基于微纳流控技术的流体相态特性研究。详细阐述了微纳流控技术在流体相态特性领域的研究进展,重点总结了基于微纳流控技术的流体物质相态特性研究的各个领域,主要涵盖了蛋白质、聚合物、表面活性剂与盐,以及工业气体与石油天然气。其中,基于微流控技术的流体相态特性检测分析手段,成功地弥补了传统“压强-体积-温度”(pressure-volume-temperature,PVT)方法中样本体量大、传质传热慢、耗时长和高温高压高危险性等缺点,因而具有很强的实用导向性;纳流控技术则以研究纳米尺度下特有的流体相态特性为主要目标,因而具有重要的科学意义和应用价值。同时展望了微纳流控技术在流体相态特性领域研究的发展前景。
中图分类号:
鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541.
BAO Bo, ZHAO Shuangliang, XU Jianhong. Progress in studying fluid phase behaviours with micro-and nano-fluidic technology[J]. CIESC Journal, 2018, 69(11): 4530-4541.
[1] | LI L, ISMAGILOV R F. Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip[J]. Ann. Rev. Biophys., 2010, 39:139-158. |
[2] | BATE F S. Polymer-polymer phase behavior[J]. Science, 1991, 251(4996):898-905. |
[3] | KAMAL M S, HUSSEIN I A, SULTAN A S. Review on surfactant flooding:phase behavior, retention, IFT, and field applications[J]. Energy & Fuels, 2017, 31:7701-7720. |
[4] | LEFEBVRE S, CHAOUKI J, GUY C. Phase mixing modeling in multiphase reactors containing gas bubble:a review[J]. International Journal of Chemical Reactor Engineering, 2004, 2:R2. |
[5] | BARKER R, HUA Y, NEVILLE A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review[J]. International Materials Review, 2017, 62(1):1-31. |
[6] | MARRE S, ROIG Y, AYMONIER C. Supercritical microfluidics:Oppurtunities in flow-through chemistry and materials science[J]. The Journal of Supercritical Fluids, 2012, 66:251-264. |
[7] | BAO B, RIORDON J, SINTON D, et al. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas[J]. Lab on a Chip, 2017, 17:2740-2759. |
[8] | PEDERSEN K S, CHRISTENSEN P L, SHAIKH J A. Phase Behavior of Petroleum Reservoir Fluids[M]. New York:Taylor& Francis Group, CRC Press, 2007:53-59. |
[9] | GONG M M, SINTON D. Turning the page:advancing paper-based microfluidics for broad diagnostic application[J]. Chemical Reviews, 2017, 117(12):8447-8480. |
[10] | ZARE R N, KIM S. Microfluidic platforms for single-cell analysis[J]. Annual Review of Biomedical Engineering, 2010, 12:187-201. |
[11] | CHOI J R, SONG H, SUNG J H, et al. Microfluidic assay-based optical measurement techniques for cell analysis:a review of recent progress[J]. Biosensors & Bioelectronics, 2016, 77:227-236. |
[12] | RAN R, SUN Q, BABY T, et al. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications[J]. Chemical Engineering Science, 2017, 169:78-96. |
[13] | DUAN C, WANG W, XIE Q, et al. Review article:fabrication of nanofluidic devices[J]. Biomicrofluidics, 2013, 7(2):026501. |
[14] | ANBARI A, CHIEN H T, DATTA S, et al. Microfluidic model porous media:fabrication and applications[J]. Small, 2018, 14:1703575-1. |
[15] | FIORINI G S, CHIU D T. Disposable microfluidic devices:fabrication, function and application[J]. BioTechniques, 2005, 38(3):429-446. |
[16] | HE Y, WU Y, FU J Z, et al. Fabrication of paper-based microfluidic analysis devices:a review[J]. RSC Advances, 2015, 5:78109-78127. |
[17] | NGUYEN P, MOHADDES D, RIORDON J, et al. Fast fluorescence-based micro fluidic method for measuring minimum miscibility pressure of CO2 in crude oils[J]. Anal. Chem., 2015, 87(6):3160-3164. |
[18] | ZHENG B, TICE J D, ROACH L S, et al. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction[J]. Angew. Chemie. Int. Ed., 2004, 43(19):2508-2511. |
[19] | TOGO M, MAEDA T, ITO A, et al. Measurement and correlation of phase equilibria for (water+aromatic hydrocarbon) binary mixtures at T=(573 to 623) K using microfluidic mixing[J]. J. Chem. Thermodyn., 2013, 67:247-252. |
[20] | MOSTOWFI F, MOLLA S, TABELING P. Determining phase diagrams of gas-liquid systems using a microfluidic PVT[J]. Lab on a Chip, 2012, 12(21):4381-4387. |
[21] | BAO B, RIORDON J, XU Y, et al. Direct measurement of the fluid phase diagram[J]. Anal. Chem., 2016, 88(14):6986-6989. |
[22] | XU Y, RIORDON J, CHENG X, et al.The full pressure-temperature phase envelope of a mixture in 1000 microfluidic chambers[J]. Angew. Chemie. Int. Ed., 2017, 129(45):14150-14155. |
[23] | SONG W, FADAEI H, SINTON D. Determination of dew point conditions for CO2 with impurities using micro fluidics[J]. Environ. Sci. Technol., 2014, 48(6):3567-3574. |
[24] | ALLY J, MOLLA S, MOSTOWFI F. Condensation in nanoporous packed beds[J]. Langmuir, 2016, 32(18):4494-4499. |
[25] | KIM M, SELL A, SINTON D. Aquifer-on-a-chip:understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13):2508-2518. |
[26] | BAO B, ZANDAVI S H, LI H, et al. Bubble nucleation and growth in nanochannels[J]. Phys. Chem. Chem. Phys., 2017, 19(12):8223-8229. |
[27] | ALFI M, NASRABADI H, BANERJEE D. Experimental investigation of confinement effect on phase behavior of hexane, heptane and octane using lab-on-a-chip technology[J]. Fluid Phase Equilibia, 2016, 423:25-33. |
[28] | PARSA E, YIN X, OZKAN E. SPE 175118:Direct observation of the impact of nanopore confinement on petroleum gas condensation[J]. SPE Technical Conference & Exhibition, 2015, 36 (3):400-407. |
[29] | ZHONG J, ZANDAVI S H, LI H, et al.Condensation in one-dimensional dead-end nanochannels[J]. ACS Nano, 2016, 11(1):304-313. |
[30] | MOLLA S, MAGRO L, MOSTOWFI F. Microfluidic technique for measuring wax appearance temperature of reservoir fluids[J]. Lab on a Chip, 2016, 16(19):3795-3803. |
[31] | HANSEN C L, SKORDALAKES E, BERGER J M, et al. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(26):16531-16536. |
[32] | PINHO B, GIRARDON S, BAZER-BACHI F, et al. A microfluidic approach for investigating multicomponent systems thermodynamics at high pressures and temperatures[J]. Lab on a Chip, 2014, 14:3843-3849. |
[33] | FISHER R, SHAH M K, ESKIN D, et al.Equilibrium gas-oil ratio measurements using a microfluidic technique[J]. Lab on a Chip, 2013, 13(13):2623-2633. |
[34] | LUTHER S K, STEHLE S, WEIHS K, et al. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using raman spectroscopy[J]. Anal. Chem., 2015, 87(16):8165-8172. |
[35] | SCHNEIDER M H, SIEBEN V J, KHARRAT A M, et al. Measurement of asphaltenes using optical spectroscopy on a microfluidic platform[J]. Anal. Chem., 2013, 85(10):5153-5160. |
[36] | LENG J, JOANICOT M, AJDARI A. Microfluidic exploration of the phase diagram of a surfactant/water binary system[J]. Langmuir, 2007, 23(5) 2315-2317. |
[37] | LEE J, BOSE A, TRIPATHI A. Rapid exploration of phase behavior in surfactant systems using flow in microchannels[J]. Langmuir, 2006, 22(26):11412-11419. |
[38] | ZHOU X, LI J, WU C, et al. Constructing the phase diagram of an aqueous solution of poly(n-isopropyl acrylamide) by controlled microevaporation in a nanoliter microchamber[J]. Macromol. Rapid Commun., 2008, 29(16):1363-1367. |
[39] | DE HAAS T, FADAEI H, GUERRERO U, et al. Steam-on-a-chip for oil recovery:the role of alkaline additives in steam assisted gravity drainage[J]. Lab on a Chip, 2013, 13(19):3832-3839. |
[40] | CHRIMES A F, KHOSHMANESH K, STODDART P R, et al. Microfluidics and Raman microscopy:current applications and future challenges[J]. Chem. Soc. Rev., 2013, 42:5880-5906. |
[41] | GAO D, LIU H, JIANG Y, et al. Recent advances in microfluidics combined with mass spectroscopy:technologies and applications[J]. Lab on a Chip, 2013, 13:3309-3322. |
[42] | HANSEN C L, SOMMER M O A, QUAKE S R. Systematic investigation of protein phase behavior with a microfluidic formulator[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(40):14431-14436. |
[43] | ANDERSON M J, HANSEN C L, QUAKE S R. Phase knowledge enables rational screens for protein crystallization[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(45):16746-16751. |
[44] | LAU B T C, BAITZ C A, DONG X P, et al. A complete microfluidic screening platform for rational protein crystallization[J]. J. Am. Chem. Soc., 2007, 129(3):454-455. |
[45] | ZHENG B, ROACH L S, ISMAGILOV R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets[J]. J. Am. Chem. Soc., 2003, 125(37):11170-11171. |
[46] | GERDTS C J, ELLIOTT M, LOVELL S, et al. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)[J]. Acta Crystallogr. Sect. D Biol. Crystallogr., 2008, 64(11):1116-1122. |
[47] | KHVOSTICHENKO D S, KONDRASHKINA E, PERRY S L, et al. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases[J]. Analyst, 2013, 138(18):5384-5395. |
[48] | KONINGSVELD R, STOCKMAYER W H, NIES E. Polymer Phase Diagrams:A Textbook[M]. London:Oxford University Press, 2001:102-104. |
[49] | MAO H, LI C, ZHANG Y, et al. Measuring LCSTs by novel temperature gradient methods:evidence for intermolecular interactions in mixed polymer solutions[J]. J. Am. Chem. Soc., 2003, 125(10):2850-2851. |
[50] | SHI F, HAN Z, LI J, et al. Mapping polymer phase diagram in nanoliter droplets[J]. Macromolecules, 2011, 44(4):686-689. |
[51] | SHANGGUAN Y, GUO D, FENG H, et al. Mapping phase diagrams of polymer solutions by a combination of microfluidic solution droplets and laser light-scattering detection[J]. Macromolecules, 2014, 47(7):2496-2502. |
[52] | SHIM J U, CRISTOBAL G, LINK D R, et al. Control and measurement of the phase behavior of aqueous solutions using microfluidics[J]. J. Am. Chem. Soc., 2007, 129(28):8825-8835. |
[53] | SELIMOVI? S, GOBEAUX F, FRADEN S. Mapping and manipulating temperature-concentration phase diagrams using microfluidics[J]. Lab on a Chip, 2010, 10(13):1696-1699. |
[54] | MAO H, LI C, ZHANG Y, et al. High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers[J]. Macromolecules, 2004, 37(3):1031-1036. |
[55] | 张杰, 史学伟, 赵双良, 等. 水盐体系相平衡研究进展[J]. 化工学报, 2016, 67(2):379-389. ZHANG J, SHI X W, ZHAO S L, et al. Progress in study on phase equilibria of salt-water systems[J]. CIESC Journal, 2016, 67(2):379-389. |
[56] | LENG J, LONETTI B, TABELING P, et al. Microevaporators for kinetic exploration of phase diagrams[J]. Phys. Rev. Lett., 2006, 96(8):1-4. |
[57] | LAVAL P, CROMBEZ A, SALMON J B. Microfluidic droplet method for nucleation kinetics measurements[J]. Langmuir, 2009, 25(3):1836-1841. |
[58] | BLUMENSCHEIN N A, HAN D, CAGGIONI M, et al. Magnetic particles as liquid carriers in the microfluidic lab-in-tube approach to detect phase change[J]. Appl. Mater. Interfaces, 2014, 6(11):8066-8072. |
[59] | MARRE S, ADAMO A, BASAK S, et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Ind. Eng. Chem. Res., 2010, 49(22):11310-11320. |
[60] | MOLLA S, MOSTOWFI F. Microfluidic PVT-saturation pressure and phase-volume measurement of black oils[J]. SPE Reserv. Eval. Eng., 2017, 20(1):233-239. |
[61] | SULLIVAN M T, ANGELESCU D E. Microfluidic bubble point measurement using thermal nucleation[J]. Energy & Fuels, 2016, 30(4):2655-2661. |
[62] | BOWDEN S A, WILSON R, PARNELL J, et al. Determination of the asphaltene and carboxylic acid content of a heavy oil using a microfluidic device[J]. Lab on a Chip, 2009, 9(6):828-832. |
[63] | SIEBEN V J, THARANIVASAN A K, RATULOWSKI J, et al. Asphaltenes yield curve measurements on a microfluidic platform[J]. Lab on a Chip, 2015, 15(20):4062-4074. |
[64] | SIEBEN V J, THARANIVASAN A K, ANDERSEN S I, et al. Microfluidic approach for evaluating the solubility of crude oil asphaltenes[J]. Energy & Fuels, 2016, 30(3):1933-1946. |
[65] | HU C, MORRIS J E, HARTMAN R L. Microfluidic investigation of the deposition of asphaltenes in porous media[J]. Lab on a Chip, 2014, 14(12):2014-2022. |
[66] | TRAVALLONI L, CASTIER M, TAVARES F M, et al. Thermodynamic modeling of confined fluids using an extension of the generalized van der Waals theory[J]. Chem. Eng. Sci., 2010, 65(10):3088-3099. |
[67] | TAN S P, PIRI M. Equation-of-state modeling of confined-fluid phase equilibria in nanopores[J]. Fluid Phase Equilib, 2015, 393:48-63. |
[68] | DONG X, LIU H, HOU J, et al. Phase equilibria of confined fluids in nanopores of tight and shale rocks considering the effect of capillary pressure and adsorption film[J]. Ind. Eng. Chem. Res., 2016, 55(3):798-811. |
[69] | ZHAO S, HU Y, YU X, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE J., 2017, 63(5):1704-1714. |
[70] | HU Y, YU X, TAO J, et al. Blocking effect of benzene-like fluid transport in nanoscale block-pores[J]. Mol. Simul., 2017, 7:526-533. |
[71] | HU Y, HUANG L, ZHAO S, et al. Effect of confinement in nano-porous materials on the solubility of a supercritical gas[J]. Mol. Phys., 2016, 114(22):3294-3306. |
[72] | QIAO C Z, ZHAO S L, LIU H L, et al. Fluids in porous media(Ⅳ):Quench effect on chemical potential[J]. J. Chem. Phys., 2017, 146(23):234504. |
[73] | ZHAO S L, LIU Y, CHEN X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47:1-83. |
[74] | WANG L, PARSA E, GAO Y F, et al. Experimental study and modeling of the effect of nanoconfinement on hydrocarbon phase behavior in unconventional reservoirs[C]//SPE Western North American and Rocky Mountain Joint Meeting. Denver, Colorado:Society of Petroleum Engineers, 2014:169581. |
[75] | ALFI M, BANERJEE D, NASRABADI H. Effect of confinement on the dynamic contact angle of hydrocarbons[J]. Energy & Fuels, 2016, 30(11):8962-8967. |
[76] | BRAS E J S, SOARES R R G, AZEVEDO A M, et al. A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems[J]. Journal of Chromatography A, 2017, 1515:252-259. |
[77] | COLLIER C M, WILTSHIRE M, NICHOLS J, et al. Nonlinear dual-phase multiplexing in digital microfluidic architectures[J]. Micromachines, 2011, 2(4):369-384. |
[78] | LAI K Y T, YANG Y T, LEE C Y. An intelligent digital microfluidic processor for biomedical detection[J]. Journal of Signal Processing Systems for Signal Image and Video Technology, 2015, 78(1):85-93. |
[79] | GAO J, LIU X M, CHEN T L, et al. An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation[J]. Lab on a Chip, 2013, 13(3):443-451. |
[80] | HUANG X, GUO J, WANG X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. Plos One, 2014, 9(8):e104539. |
[81] | TANG D, HUANG D, YANG Z, et al. Developmental trend of microfluidic chip and biosensor technologies and the integration mode with machine learning model and wearable device[J]. International Journal of Biomedical Engineering and Technology, 2017, 23(2/3/4):281-302. |
[82] | CHEN C P, MEHL B T, MUNSHI A S, et al. 3D-printed microfluidic devices:fabrication, advantages and limiations-a mini review[J]. Analytical Methods, 2016, 8(31):6005-6012. |
[83] | PRINA E, MISTRY P, SIDNEY L E, et al. 3D microfabricated scaffolds and microfluidic devices for ocular surface replacement:a review[J]. Stem Cell Reviews and Reports, 2017, 13(3):430-441. |
[84] | JATUKARAN A, ZHONG J, PERSAD A, et al. Direct visualization of evaporation in a two-dimensional nanoporous model for unconventional natural gas[J]. ACS Applied Nano Materials, 2018, 1:1332-1338. |
[85] | HASHAM A A, ABEDINI A, JATUKARAN A, et al. Visualization of fracturing fluid dynamics in a nanofluidic chip[J]. Journal of Petroleum Science and Engineering, 2018, 165:181-186. |
[86] | DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nat. Nanotechnol., 2010, 5(12):848-852. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[7] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[8] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[9] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[12] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[13] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[14] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[15] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||