[1] |
胡江亮, 孙天军, 刘小伟, 等. CH4-N2在MOFs结构材料中的吸附分离性能[J]. 化工学报, 2015, 66(9):3518-3528. HU J L, SUN T J, LIU X W, et al. Adsorption and separation of CH4-N2 with different structural MOFs[J]. CIESC Journal, 2015, 66(9):3518-3528.
|
[2] |
张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2 和CO2/CH4 的分离[J]. 化工学报, 2015, 66(9):3549-3555. ZHANG Z M, YANG J F, CHEN Y, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9):3549-3555.
|
[3] |
杨江峰, 赵强, 于秋红, 等. 煤层气回收及CH4/N2分离PSA材料的研究进展[J]. 化工进展, 2011, 30(4):793-801. YANG J F, ZHAO Q, YU Q H, et al. Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2011, 30(4):793-801.
|
[4] |
PERRY R H, GREEN D W. Perry's Chemical Engineers' Handbook[M]. New York:McGraw-Hill, 1999.
|
[5] |
DAVID C B, JOHN L B, ARASH A. Nitrogen Removal from Natural Gas:Phase Ⅱ[M]. Washington, DC:U.S. Department of Energy, 1999.
|
[6] |
SIMONE C, CARLOS A G, ALIRIO E R, et al. Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas[J]. Chem. Eng. Sci., 2006, 61(12):3893-3906.
|
[7] |
TAGLIABUE M, FARRUSSENG D, VALENCIA S, et al. Natural gas treating by selective adsorption:material science and chemical engineering interplay[J]. Chem. Eng. J., 2009, 155(3):553-566.
|
[8] |
刘克万, 辜敏, 鲜学福, 等. 变压吸附浓缩甲烷/氮气中甲烷的研究进展[J]. 现代化工, 2007, 27(12):15-18. LIU K W, GU M, XIAN X F, et al. Research progress in concentration of methane from CH4/N2 by PSA[J]. Mod. Chem. Ind., 2007, 27(12):15-18.
|
[9] |
EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295:469-472.
|
[10] |
HWANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:consequences for catalysis and metal encapsulation[J]. Angew. Chem. Int. Ed., 2008, 47:4144-4148.
|
[11] |
LLEWELLYN P L, BOURRELLY S, SERRE C, et al. High uptakes of CO2 and CH4 in mesoporous metal organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24:7245-7250.
|
[12] |
DIETZEL P D C, BESIKIOTIS V, BLOM R, et al. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. J. Mater. Chem., 2009, 19:7362-7370.
|
[13] |
YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423:705-714.
|
[14] |
LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279.
|
[15] |
STOCK N, BISWAS S, et al. Synthesis of metal-organic frameworks (MOFs):routes to various MOF topologies, morphologies, and composites[J]. Chem. Rev., 2012, 112:933-969.
|
[16] |
JANIAK C, VIETH J K, et al. MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs)[J]. New J. Chem., 2010, 34:2366-2388.
|
[17] |
YU D, YAZAYDIN A O, LANE J R, et al. A combined experimental and quantum chemical study of CO2 adsorption in the metal-organic framework CPO-27 with different metals[J]. Chem. Sci., 2013, 4:3544-3556.
|
[18] |
PENG Y, KRUNGLEVICIUTE V, ERYAZICI I, et al. Methane storage in metal-organic frameworks:current records, surprise findings, and challenges[J]. J. Am. Chem. Soc., 2013, 135:11887-11894.
|
[19] |
LI B, WEN H M, WANG H, et al. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J]. J. Am. Chem. Soc., 2014, 136:6207-6210.
|
[20] |
HE Y, ZHOU W, YILDIRIM T, et al. A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity[J]. Energy Environ. Sci., 2013, 6:2735-2744.
|
[21] |
MA S, SUN D, SIMMONS J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. J. Am. Chem. Soc., 2008, 130:1012-1016.
|
[22] |
ELSAIDI S K, MOHAMED M H, WOJTAS L, et al. Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets[J]. J. Am. Chem. Soc., 2014, 136:5072-5077.
|
[23] |
ROSI N L, KIM J, EDDAOUDI M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. J. Am. Chem. Soc. 2005, 127:1504-1518.
|
[24] |
DIETZEL P D C, PANELLA B, HIRSCHER M, et al. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework[J]. Chem. Commun., 2006, (9):959-961.
|
[25] |
DIETZEL P D C, MORITA Y, BLOM R, et al. An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains[J]. Angew. Chem. Int. Ed., 2005, 44:6354-6358.
|
[26] |
ZHOU W, WU H, YILDIRIM T, et al. Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J]. J. Am. Chem. Soc., 2008, 130:15268-15269.
|
[27] |
DIETZEL P D C, BLOM R, FJELLVAG H, et al. Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand[J]. Eur. J. Inorg. Chem., 2008, 23:3624-3632.
|
[28] |
BLOCH E D, MURRAY L J, QUEEN W L, et al. Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron (Ⅱ) coordination sites[J]. J. Am. Chem. Soc., 2011, 133:14814-14822.
|
[29] |
VISHNYAKOV A, RAVIKOVITCH P I, NEIMARK A V. Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J]. Nano Letters, 2003, 3:713-718.
|
[30] |
MURRAY L J, DINCA M, YANO J, et al. Highly-selective and reversible O2 binding in Cr3(1, 3, 5-benzenetricarboxylate)2[J]. J. Am. Chem. Soc., 2010, 132:7856-7857.
|
[31] |
MANIAM P, STOCK N, et al. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods[J]. Inorg. Chem., 2011, 50:5085-5097.
|
[32] |
KRAMER M, ULRICH S B, KASKEL S, et al. Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1)[J]. J. Mater. Chem., 2006, 16:2245-2248.
|
[33] |
ZHANG Z, ZHANG L, WOJTAS L, et al. Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins[J]. J. Am. Chem. Soc., 2012, 134:928-933.
|
[34] |
BHUNIA M K, HUGHES J T, FETTINGER J C, et al. Thermochemistry of paddle wheel MOFs:Cu-HKUST-1 and Zn-HKUST-1[J]. Langmuir, 2013, 29, 8140-8145.
|
[35] |
LI L B, YANG J F, CHEN Y, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC:a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198:236-246.
|
[36] |
LI J M, YANG J F, LI L B. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. Journal of Energy Chemistry, 2014, 23:453-460.
|
[37] |
MARKUS K, ULRICH S, STEFAN K. Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1)[J]. J. Mater. Chem., 2006, 16:2245-2248.
|
[38] |
WANG X Q, LI L B, WANG Y. Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons[J]. Cryst. Eng. Comm., 2017, 19:1729-1737.
|