[1] |
STEELE B C. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃[J]. Solid State Ionics, 2000, 129(1/2/3/4):95-110.
|
[2] |
MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129:(1/2/3/4):63-94.
|
[3] |
KHARTON V V, FIGUEIREDO K M, NAVARRO L. Ceria-based materials for solid oxide fuel cells[J]. J. Mater. Sci., 2001, 36(5):1105-1117.
|
[4] |
ZHA S W, XIA C R, MENG G Y. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115(1):44-48.
|
[5] |
ZHANG X G, ROBERTSON M, DECES-PETIT C. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164(2):668-677.
|
[6] |
EGUCHI K, SETOGUCHI T, INOUE T, et al. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells[J].Solid State Ionics, 1992,52(1/2/3):165-172.
|
[7] |
STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J].Nature, 2001, 414(6861):345-352.
|
[8] |
GOODENOUGH J B. Oxide-ion electrolytes[J]. Annual Review of Materials Research, 2003,33(1):91-128.
|
[9] |
ATKINSON A. Chemically-induced stresses in gdolinium-doped ceria solid oxide fuel cell electrolytes[J]. Solid State Ionics,1997,95(3/4):249-258.
|
[10] |
LIU M F, PENG R R, DONG D H, et al. Direct liquid methanol-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2008, 185(1):188-192.
|
[11] |
SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005):170-173.
|
[12] |
MENG G Y, JIANG C R, MA J J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007, 173(1):189-193.
|
[13] |
YIN Y H, ZHU W, XIA C R, et al. Gel-cast NiO-SDC composites as anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2004, 132(1/2):36-41.
|
[14] |
DUNCAN K L, LEE K T, WACHSMAN E D. Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes[J]. Journal of Power Sources, 2011, 196(5):2445-2451.
|
[15] |
WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058):935-939.
|
[16] |
QIAN J, ZHU Z, DANG J, et al. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria-zirconia bilayer electrolytes on modified anode substrate[J].Electrochimica Acta, 2013, 92:243-247.
|
[17] |
PARK J Y, YOON H, WACHSMAN E D. Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells[J]. Journal of the American Ceramic Society, 2005, 88(9):2402-2408.
|
[18] |
AHN J S, PERGOLESI D, CAMARATTA M A, et al. High-performance bilaayered electrolyte intermediate temperature solid oxide fuel cells[J].Electrochemistry Communications, 2009,11(7):1504-1507.
|
[19] |
LEE K T, JUNG D W, CAMARATTA M A, et al. Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 205:122-128.
|
[20] |
TSAI T P, PERRY E, BARNETT S. Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(5):L130-L132.
|
[21] |
JANG W S, HYUN S H, KIM S G. Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC[J]. Journal of Materials Science, 2002, 37(12):2535-2541.
|
[22] |
KIM S G, YOON S P, NAM S W, et al. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method[J]. Journal of Power Sources, 2002, 110(1):222-228.
|
[23] |
CHAN S H, CHEN X J, KHOR K A. A simple bilayer electrolyte model for solid oxide fuel cells[J]. Solid State Ionics, 2003, 158(1/2):29-43.
|
[24] |
LIU Q L, KHOR K A, CHAN S H, et al. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte prepared by wet ceramic co-sintering process[J]. Journal of Power Sources, 2006, 162(2):1036-1042.
|
[25] |
ZHANG X, GAZZARRI J, ROBERTSON M, et al. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte[J]. Journal of Power Sources, 2008, 185(2):1049-1055.
|
[26] |
ZHANG X, ROBERTSON M, DECES-PETIT C, et al. Solid oxide fuel cells with bi-layered electrolyte structure[J]. Journal of Power Sources, 2008, 175(2):800-805.
|
[27] |
CHO S, KIM Y, KIM J H, et al. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte[J]. Electrochimica Acta, 2011, 56(16):5472-5477.
|
[28] |
OH E O, WHANG C M, LEE Y R, et al. Extremely thin bilayer electrolyte for solid oxide fuel cells(SOFCs) fabricated by chemical solution deposition(CSD)[J]. Advanced Materials, 2012, 24(25):3373-3377.
|
[29] |
QIAN J, TAO Z, XIAO J, et al. Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition[J].International Journal of Hydrogen Energy, 2013,38(5):2407-2412.
|
[30] |
YANG K, WANG J X, XUE Y J, et al. Synthesis, sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3-δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1) O3-δ proton conductors[J].Ceramics International, 2014, 40(9)B:15073-15081.
|
[31] |
WANG W, CHEN Y B, WANG F, et al. Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anode for solid oxide fuel cells operating on ethanol[J].Chemical Engineering Science, 2015, 126:22-31.
|
[32] |
LIU Y, YANG L, LIU M F, et al. Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by addition of nickel oxide[J]. Journal of Power Sources, 2011, 196(23):9980-9984.
|
[33] |
SHI Z, SUN W P, LIU W. Synthesis and characterization of BaZr0.3Ce0.5Y0.2-xYbxO3-δ proton conductor for solid oxide fuel cells[J]. Journal of Power Sources, 2014, 245:953-957.
|
[34] |
CHEN C C, LIU M F, BAI Y H, et al. Anode-supported tubular SOFCs based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte fabricated by dip coating[J].Electrochemistry Communications, 2011, 13(6):615-618.
|
[35] |
CAO J F, GONG Z, FAN C G, et al. The improvement of barium-containing anode for ceria-based electrolyte with electron-blocking layer[J]. Journal of Alloys and Compounds, 2017, 693:1068-1075.
|
[36] |
JI Y, LIU J, HE T M, et al. Single intermedium-temperature SOFC prepared by glycine-nitrate process[J]. Journal of Alloys and Compounds, 2003, 353:257-262.
|
[37] |
AI N, LV Z, CHEN K F, et al. Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC[J]. Journal of Membrane Science, 2006, 286:255-259.
|
[38] |
丁姣, 刘江, 郭为民. 用于制备SOFC电解质膜Sm0.2Ce0.8O1.9的合成及性能研究[J]. 无机材料学报, 2009, 24(1):152-156. DING J, LIU J, GUO W M. Research on the performance of Sm0.2Ce0.8O1.9(SDC) prepared by different methods[J]. Journal of Inorganic Materials, 2009, 24(1):152-156.
|
[39] |
ZHANG H Z, YANG W S. Highly efficient electro catalysts for oxygen reduction reaction[J].Chemical Communications, 2007, 41:4215-4217.
|
[40] |
DING D, LIU B, ZHU Z, et al. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(21-26):896-899.
|
[41] |
白耀辉. 直接使用化石燃料的固体氧化物燃料电池的研究[D].广州:华南理工大学,2012. BAI Y H. Investigation of direct fossil fuel solid oxide fuel cells[D]. Guangzhou:South China University of Technology, 2012.
|