化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4835-4846.DOI: 10.11949/0438-1157.20190798
收稿日期:
2019-07-11
修回日期:
2019-08-15
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
廖艳芬
作者简介:
陈智豪(1994—),男,硕士研究生,基金资助:
Zhihao CHEN(),Yanfen LIAO(),Fei MO,Guicai LIU,Zhaosheng YU,Xiaoqian MA
Received:
2019-07-11
Revised:
2019-08-15
Online:
2019-12-05
Published:
2019-12-05
Contact:
Yanfen LIAO
摘要:
通过溶胶凝胶燃烧法合成了MnFeO3和MnFe2O4两种锰铁复合氧载体。通过原位红外实验探究其与稻草的化学链气化过程,发现其加速了稻草热解产物的析出,并通过气化反应促进CO和CO2的产生,提高了碳转化率。固定床实验结果表明MnFeO3和MnFe2O4在与水蒸气耦合气化的条件下大幅提高了合成气中H2和CO的产率,气化效率分别达到94.49%和92.76%。并通过XRD分析,发现MnFeO3和MnFe2O4在气化过程主要还原为(Fe,Mn)O,且在氧化反应后能回到初始晶相。在固定床的10次循环实验以及SEM的结果表明,MnFeO3在循环反应中逐渐形成的颗粒状多孔结构有利于维持稳定的气化效率,而MnFe2O4由于团聚和烧结作用形成了块状结构,气化效率呈缓慢下降趋势。因此,认为MnFeO3在生物质化学链气化中具有更好的适用性。
中图分类号:
陈智豪, 廖艳芬, 莫菲, 刘桂才, 余昭胜, 马晓茜. MnFeO3和MnFe2O4氧载体在稻草化学链气化中的应用[J]. 化工学报, 2019, 70(12): 4835-4846.
Zhihao CHEN, Yanfen LIAO, Fei MO, Guicai LIU, Zhaosheng YU, Xiaoqian MA. Application of MnFeO3 and MnFe2O4 as oxygen carriers for straw chemical looping gasification[J]. CIESC Journal, 2019, 70(12): 4835-4846.
工业分析/%(mass) | 元素分析/%(mass) | 热值/(MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | N | S | O① | |
76.32 | 8.14 | 15.54 | 42.48 | 6.24 | 0.55 | 0.03 | 42.56 | 17.50 |
表1 稻草元素分析、工业分析与热值分析(干基)
Table 1 Proximate and ultimate analysis of rice straw (dry basis)
工业分析/%(mass) | 元素分析/%(mass) | 热值/(MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | N | S | O① | |
76.32 | 8.14 | 15.54 | 42.48 | 6.24 | 0.55 | 0.03 | 42.56 | 17.50 |
氧载体 | 未添加水蒸气 | 添加水蒸气 | ||||
---|---|---|---|---|---|---|
η/% | η C/% | G v/(m3/kg) | η/% | η C/% | G v/(m3/kg) | |
none | 52.85 | 55.7 | 0.60 | 81.37 | 83.58 | 1.11 |
Fe2O3 | 56.66 | 72.81 | 0.75 | 88.21 | 90.47 | 1.44 |
MnFeO3 | 56.94 | 74.57 | 0.79 | 94.49 | 96.89 | 1.61 |
MnFe2O4 | 61.28 | 76.37 | 0.85 | 92.76 | 93.28 | 1.58 |
表2 化学链气化过程的性能评价
Table 2 Performance evaluation of chemical looping gasification process
氧载体 | 未添加水蒸气 | 添加水蒸气 | ||||
---|---|---|---|---|---|---|
η/% | η C/% | G v/(m3/kg) | η/% | η C/% | G v/(m3/kg) | |
none | 52.85 | 55.7 | 0.60 | 81.37 | 83.58 | 1.11 |
Fe2O3 | 56.66 | 72.81 | 0.75 | 88.21 | 90.47 | 1.44 |
MnFeO3 | 56.94 | 74.57 | 0.79 | 94.49 | 96.89 | 1.61 |
MnFe2O4 | 61.28 | 76.37 | 0.85 | 92.76 | 93.28 | 1.58 |
氧载体 | 空间群 | 晶胞常数 | 晶夹角 | Mn—O/? | Fe—O/? |
---|---|---|---|---|---|
Fe2O3 | R -3 c | a=b=4.986,c=13.502 | α =β=90°,γ=120° | — | 2.1095 |
MnFeO3 | I a -3 | a=b=c=9.365 | α=β=γ=90° | 2.0245 | 2.0245 |
MnFe2O4 | F d -3 m | a=b=c=8.498 | α =β=γ=90° | 2.0446 | 2.0134 |
表3 氧载体晶体参数
Table 3 Crystal parameters of oxygen carriers
氧载体 | 空间群 | 晶胞常数 | 晶夹角 | Mn—O/? | Fe—O/? |
---|---|---|---|---|---|
Fe2O3 | R -3 c | a=b=4.986,c=13.502 | α =β=90°,γ=120° | — | 2.1095 |
MnFeO3 | I a -3 | a=b=c=9.365 | α=β=γ=90° | 2.0245 | 2.0245 |
MnFe2O4 | F d -3 m | a=b=c=8.498 | α =β=γ=90° | 2.0446 | 2.0134 |
1 | Woolcock P J , Brown R C . A review of cleaning technologies for biomass-derived syngas[J]. Biomass and Bioenergy, 2013, 52(3): 54-84. |
2 | Caputo A C , Palumbo M , Pelagagge P M , et al . Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables[J]. Biomass & Bioenergy, 2005, 28(1): 35-51. |
3 | Huang Z , Zhang Y , Fu J J , et al . Chemical looping gasification of biomass char using iron ore as an oxygen carrier[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17871-17883. |
4 | Diego L F D , Ortiz M , García-Labiano F , et al . Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. Journal of Power Sources, 2009, 192(1): 27-34. |
5 | Adanez J , Abad A , Garcia-Labiano F , et al . Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy & Combustion Science, 2012, 38(2): 215-282. |
6 | Liu G C , Liao Y F , Wu Y T , et al . Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive[J]. Applied Energy, 2018, 212: 955-965. |
7 | Guo L , Zhao H B , Zheng C G . Synthesis gas generation by chemical-looping reforming of biomass with natural copper ore as oxygen carrier[J]. Waste & Biomass Valorization, 2015, 6(1): 81-89. |
8 | Hu Z F , Jiang E C , Ma X Q . The effect of oxygen carrier content and temperature on chemical looping gasification of microalgae for syngas production[J]. Journal of the Energy Institute, 2019, 92(3): 474-487. |
9 | 王保文 . 化学链燃烧技术中铁基氧载体的制备及其性能研究[D]. 武汉: 华中科技大学, 2008. |
Wang B W . Research on combustion synthesis of Fe2O3-based oxygen carrier and its performance used in chemical looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
10 | Zeng J M , Xiao R , Zhang H Y , et al . Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production [J]. Fuel Processing Technology, 2017, 168: 116-122. |
11 | Wu Y T , Liao Y F , Liu G C , et al . Reactivity investigation on biomass chemical looping conversion for syngas production [J]. Journal of the Energy Institute, 2019, 92(4): 1137-1148. |
12 | 黄振, 何方, 李海滨, 等 . 天然铁矿石为氧载体的生物质化学链气化制合成气实验研究[J]. 燃料化学学报, 2012, 40(3): 300-308. |
Huang Z , He F , Li H B , et al . synthesis gas generation by chemical-looping gasification of biomass using natural hematite as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 300-308. | |
13 | Bazhenova E , Honkala K . Screening the bulk properties and reducibility of Fe-doped Mn2O3 from first principles calculations[J]. Catalysis Today, 2017, 285: 104-113. |
14 | Wang K , Yu Q B , Qin Q , et al . Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method[J]. International Journal of Hydrogen Energy, 2016, 41(24): 10346-10353. |
15 | Rustamov V R , Abdullayev K M , Samedov E A . Biomass conversion to liquid fuel by two-stage thermochemical cycle[J]. Energy Conversion and Management, 1998, 39(9): 869-875. |
16 | Adánez-Rubio I , Pérez-Astray A , Mendiara T , et al . Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide[J]. Fuel Processing Technology, 2018, 172: 179-186. |
17 | Schmitz M , Linderholm C . Chemical looping combustion of biomass in 10- and 100-kW pilots — analysis of conversion and lifetime using a sintered manganese ore[J]. Fuel, 2018, 231: 73-84. |
18 | 梅道锋 . 煤化学链燃烧的铁/铜/锰基氧载体的实验及反应动力学研究[D]. 武汉: 华中科技大学, 2016. |
Mei D F . Experimental and kinetics investigation of iron/copper/manganese based oxygen carriers for chemical looping combustion of coal[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
19 | 牛鹏杰 . 基于钙铁复合氧载体的化学链气化研究[D]. 武汉: 华中科技大学, 2018. |
Niu P J . Investigation on chemical-looping gasification using calcium-ferrum mixed oxide as oxygen carriers[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
20 | 王旭锋, 刘晶, 刘丰, 等 . 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报, 2019, 70(4): 1583-1590. |
Wang X F , Liu J , Liu F , et al . Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier[J]. CIESC Journal, 2019, 70(4): 1583-1590. | |
21 | Larring Y , Braley C , Pishahang M , et al . Evaluation of a mixed Fe-Mn oxide system for chemical looping combustion[J]. Energy & Fuels, 2015, 29(5): 3438-3445. |
22 | Lambert A , Delquié C , Clémeneçon I , et al . Synthesis and characterization of bimetallic Fe/Mn oxides for chemical looping combustion[J]. Energy Procedia, 2009, 1(1): 375-381. |
23 | Rydén M , Lyngfelt A , Mattisson T . Combined manganese/iron oxides as oxygen carrier for chemical looping combustion with oxygen uncoupling (CLOU) in a circulating fluidized bed reactor system[J]. Energy Procedia, 2011, 4: 341-348. |
24 | Ghosh D , Dutta U , Haque A , et al . Evidence of low temperature spin glass transition in bixbyite type FeMnO3 [J]. Materials Science and Engineering: B, 2017, 226: 206-210. |
25 | Zhang C T , Zhang L J , Li Q Y , et al . Catalytic pyrolysis of poplar wood over transition metal oxides: correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass and Bioenergy, 2019, 124: 125-141. |
26 | Doroftei C , Popa P D , Rezlescu E , et al . Structural and catalytic characterization of nanostructured iron manganite[J]. Composites Part B: Engineering, 2014, 67: 179-182. |
27 | Wang B W , Gao C C , Wang W S , et al . Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier[J]. J. Environ. Sci. , 2014, 26(5): 1062-1070. |
28 | Yang Y J , Liu J , Zhang B K , et al . Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4 [J]. Journal of Hazardous Materials, 2017, 321: 154-161. |
29 | Abián M , Abad A , Izquierdo M T , et al . Titanium substituted manganese-ferrite as an oxygen carrier with permanent magnetic properties for chemical looping combustion of solid fuels[J]. Fuel, 2017, 195: 38-48. |
30 | Chen J , Zhao K , Zhao Z L , et al . Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4674-4687. |
31 | 付鹏 . 生物质热解气化气相产物释放特性和焦结构演化行为研究[D]. 武汉: 华中科技大学, 2010. |
Fu P . Study on gas release characteristics and char structural evolution during pyrolysis and gasification of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2010. | |
32 | 郭振戈 . 基于PY-GC/MS及原位红外纤维素热解机理研究[D]. 广州: 华南理工大学, 2016. |
Guo Z G . cellulose pyrolysis mechanism research based on the in situ infrared and PY-GC/MS[D]. Guangzhou: South China University of Technology, 2016. | |
33 | Dong Q , Zhang S P , Ding K , et al . Pyrolysis behavior of raw/torrefied rice straw after different demineralization processes[J]. Biomass and Bioenergy, 2018, 119: 229-236. |
34 | Li J J , Mei X L , Zhang L J , et al. A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-based catalysts in steam reforming of methanol , acetic acid and acetone[J/OL]. International Journal of Hydrogen Energy, 2019, https: //doi. org/ 10. 1016/j. ijhydene. 2019. 03. 269. |
35 | Andrew R , Gokak D T , Sharma P , et al . Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor[J]. Waste Manag. Res. , 2016, 35(12): 818-825. |
36 | Franco C , Pinto F , Gulyurtlu I , et al . The study of reactions influencing the biomass steam gasification process[J]. Fuel, 2003, 82(7): 835-842. |
37 | Huang Z , He F , Zheng A Q , et al . Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier[J]. Energy, 2013, 53: 244-251. |
38 | Liu G C , Liao Y F , Wu Y T , et al . Characteristics of microalgae gasification through chemical looping in the presence of steam[J]. International Journal of Hydrogen Energy, 2017, 36(42): 22730-22742. |
39 | 安梅, 马晶晶, 吴唯, 等 . 基于CuFe2O4载氧体的羊肠煤化学链气化特性[J]. 石油学报(石油加工), 2019, 35(3): 561-568. |
An M , Ma J J , Wu W , et al . Chemical looping gasification of Yangchang coal with CuFe2O4 as oxygen carrier[J]. Acta Petrolei Sinica (Petroaleum Processing Section), 2019, 35(3): 561-568. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[9] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[10] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[11] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[12] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[13] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[14] | 仇鹏, 韩洋, 许建良, 王辅臣, 代正华. 用于预测气流床煤气化的EDC模型参数研究[J]. 化工学报, 2023, 74(1): 428-437. |
[15] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||