化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1035-1041.DOI: 10.11949/j.issn.0438-1157.20180662
收稿日期:
2018-06-19
修回日期:
2018-12-13
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
王耀武
作者简介:
通信作者:王耀武(1980—),男,博士,副教授,<email>wangyw@smm.neu.edu.cn</email>
基金资助:
Yaowu WANG(),Jianping PENG,Yuezhong DI,Pengcheng HAO
Received:
2018-06-19
Revised:
2018-12-13
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yaowu WANG
摘要:
通过对大修铝电解槽中废防渗料的成分和物相组成进行分析,探讨了干式防渗料与电解质的反应机理。研究结果表明,渗透电解质中的NaF和冰晶石均会与干式防渗料反应生成霞石(NaAlSiO4)玻璃体层,可起到防止电解质进一步向下渗透的作用。但随着渗透电解质的增加,冰晶石会继续与霞石反应生成β氧化铝,β氧化铝层不具有防渗作用,这是导致防渗料中电解质继续渗透的主要原因之一。渗透电解质与防渗料反应还可生成SiF4气体,使硅元素向防渗料下部迁移,导致废防渗料上层硅元素含量降低。
中图分类号:
王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells[J]. CIESC Journal, 2019, 70(3): 1035-1041.
Element | Dry barrier/%(mass) | Spent dry barrier/%(mass) |
---|---|---|
Al | 18.49 | 16.6 |
Si | 25.02 | 12.36 |
Na | 0.10 | 23.55 |
F | 0 | 8.00 |
Ca | 1.14 | 1.98 |
Fe | 2.40 | 3.59 |
K | 2.05 | 1.36 |
表1 干式防渗料原料及废防渗料的平均成分
Table 1 Main composition of dry barrier and spent dry barrier
Element | Dry barrier/%(mass) | Spent dry barrier/%(mass) |
---|---|---|
Al | 18.49 | 16.6 |
Si | 25.02 | 12.36 |
Na | 0.10 | 23.55 |
F | 0 | 8.00 |
Ca | 1.14 | 1.98 |
Fe | 2.40 | 3.59 |
K | 2.05 | 1.36 |
Sample number | Element content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Al | Si | Na | F | Ca | TFe | K | |
dry barrier | 18.49 | 25.02 | 0.10 | 0.00 | 1.14 | 2.40 | 2.05 |
1 | 22.78 | 3.66 | 21.07 | 18.00 | 2.37 | 0.60 | 0.37 |
2 | 21.18 | 6.82 | 22.51 | 19.28 | 2.46 | 1.66 | 0.25 |
3 | 13.14 | 21.52 | 16.91 | 1.89 | 1.40 | 2.04 | 1.07 |
4 | 12.98 | 21.06 | 16.27 | 0.72 | 1.16 | 2.96 | 1.23 |
5 | 15.46 | 27.15 | 2.32 | 0.085 | 1.20 | 2.48 | 1.35 |
表2 不同层的废防渗料的成分
Table 2 Main composition of spent dry barrier in different layers
Sample number | Element content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Al | Si | Na | F | Ca | TFe | K | |
dry barrier | 18.49 | 25.02 | 0.10 | 0.00 | 1.14 | 2.40 | 2.05 |
1 | 22.78 | 3.66 | 21.07 | 18.00 | 2.37 | 0.60 | 0.37 |
2 | 21.18 | 6.82 | 22.51 | 19.28 | 2.46 | 1.66 | 0.25 |
3 | 13.14 | 21.52 | 16.91 | 1.89 | 1.40 | 2.04 | 1.07 |
4 | 12.98 | 21.06 | 16.27 | 0.72 | 1.16 | 2.96 | 1.23 |
5 | 15.46 | 27.15 | 2.32 | 0.085 | 1.20 | 2.48 | 1.35 |
1 | 王再云, 肖亚明, 张凤炳 .干式防渗透料在铝电解槽上应用的工业试验[J]. 有色冶金节能, 1999, (4): 25-29. |
Wang Z Y , Xiao Y M , Zhang F B . Industrial test of dry antipermeate coating applied in aluminium electrolytic cell[J]. Energy Saving of Non-Ferrous Metallurgy, 1999, (4): 25-29. | |
2 | 包生重, 柴登鹏, 李晓星, 等 . 含钾盐电解质对干式防渗料渗透的试验研究[J]. 轻金属, 2017, (6): 28-32. |
Bao S C , Chai D P , Li X X , et al . Research on penetration of electrolyte containing potassium salts into dry barrier materials[J]. Light Metals. 2017, (6): 28-32. | |
3 | Jeltsch R , Chen C . Dry barrier mix in reduction cell cathodes[C]//Carlos E. Suarez. Light Metals. San Diego, USA: John Wiley & Sons Inc, 2012: 1259-1263. |
4 | Morten S , A Φ Harald . Cathodes in Aluminum Electrolysis[M]//Dusseldorf: Aluminum-Verlag Marketing & Kommunikation GmbH, 2010: 70-72. |
5 | 刘世英, 石忠宁, 任必军, 等 . 铝电解槽用干防渗料的导热性与抗渗性[J]. 中国有色金属学报, 2006, 16(9): 1641-1645. |
Liu S S , Shi Z N , Ren B J , et al . Thermal conduction and anti-penetration of dry barrier powder materials for aluminium electrolytic cells[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9): 1641-1645. | |
6 | 杨贵海, 董建雄, 孙喜喜, 等 . 干式防渗料在70 kA自焙槽上的应用[J]. 轻金属, 2003, (7): 30-33. |
Yang G H , Dong J X , Sun X X , et al . Applied of dry barrier in 70 kA aluminum electrolytic cell[J]. Light Metals, 2003, (7): 30-33. | |
7 | Pelletier R , Allaire C , Siljan O J , et al . The corrosion of potlining refractories: a unified approach[J]. JOM, 2001, 53(8): 18-22. |
8 | Schöning C , Grande T , Siljan O J . Cathode refractory materials for aluminum reduction cells[C]//C. Edward Eckert. Light Metals. San Diego, USA: John Wiley & Sons Inc, 1999: 231. |
9 | Rutlin J , Grande T . Fluoride attack on alumino-silicate refractories in aluminium electrolysis cells[C]// Huglen R. Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1997: 295-301. |
10 | Brunk F . Corrosion and Behaviour of Fireclay Bricks of Varying Chemical Composition Used in the Bottom Lining of Reduction Cells[C]// Mannweiler U. Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1994: 834-838. |
11 | Dolejš D , Baker D R . Thermodynamic modeling of melts in the system Na2O-NaAlO2-SiO2-F2O[J]. Geochimical at Cosmochimica Acta, 2005, 69(23): 5537-5556. |
12 | Siljan O J , Junge O , Svendsen T , et al . Experiences with dry barrier powder materials in aluminium electrolysis cells[M]// Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1998: 573-581. |
13 | Lambotte G , Chartrand P . Thermodynamic modeling of the (Al2O3+Na2O), (Al2O3+Na2O+SiO2), and (Al2O3+Na2O+AlF3+NaF) systems[J]. The Journal of Chemical Thermodynamics, 2013, 57(2): 306-334. |
14 | 姚巍, 杨贵海, 高升志, 等 . 再论干式防渗料在铝电解槽上的应用[C]//中国有色金属学会. 提高铝电解槽使用寿命学术研讨会论文集. 河南 伊川: 中国有色金属学会, 2004: 90-95. |
Yao W , Yang G H , Gao S Z , et al . Further discussion on dry barrier applied in aluminium electrolytic cell[C] //The Nonferrous Metals Society of China. Proceedings of improving the service life of aluminum reduction cells. Henan Yichuan: The Nonferrous Metals Society of China, 2004: 90-95. | |
15 | 吕任敏, 于海东, 张灿辉, 等 . 铝电解槽用干式防渗料[J]. 耐火材料. 2002,36(增刊): 73-79. |
Lyu R M , Yu H D , Zhang C H , et al . Dry barrier for aluminum electrolytic cell[J]. Refractory Materials, 2002,36(Suppl.): 73-79. | |
16 | 吴斌, 赵义, 王落霞, 等 . 电解槽用抗渗透砖的研制[J]. 轻金属, 2014, (5): 28-31. |
Wu B , Zhao Y , Wang L X , et al . Development of the barrier brick used in aluminum reduction pots[J]. Light Metals, 2014, (5): 28-31. | |
17 | Neff D V . Clayburn dri-barrier mix its application as a barrier lining in reduction cells[C]//Carlos E. Suarez. Light Metals. San Antonio, USA: John Wiley & Sons, Inc. 2013: 266-292. |
18 | Bittencourt L R , Bonadia P , Valenzuela F A O . Aluminosilicate refractories for aluminum cell linings[J]. American Ceramic Society Bulletin. 2005, 84(2): 26-31. |
19 | Allaire C . Refractory lining for alumina electrolytic cells[J]. Journal of the American Ceramic Society. 2010, 75(8): 2308-2311. |
20 | 朱新伟, 刘双, 熊毅 . 铝电解槽用新型干式防渗料性能的研究[J]. 轻金属, 2009, (10): 26-30. |
Zhu X W , Liu S , Xiong Y . Studies on a new phase plate dry barrier for aluminium electrolytic cell[J]. Light Metals, 2009, (10): 26-30. | |
21 | 张爱芬, 马慧侠, 白万里 . 熔融制样-X射线荧光光谱法测定铝电解槽用干式防渗料中主次成分[J]. 冶金分析, 2014, 34(5): 25-29. |
Zhang A F , Ma H X , Bai W L . Determination of major and minor components in dry barrier of aluminum electrolytic cell by X-ray fluorescence spectrometry with sample fusion preparation[J]. Metallurgical Anaysis. 2014, 34(5): 25-29. | |
22 | 赵更金, 吕风雷, 苗拥军, 等 . YS/T 456—2014《铝电解槽用干式防渗料》修订介绍[J]. 耐火材料, 2014, 48(6): 478-480. |
Zhao G X , Lyu F L , Miao Y J , et al . Revised introduction of YS/T 456—2014 dry barrier powder refractory for aluminum electrolysis cell[J]. Refractory. 2014, 48(6): 478-480. | |
23 | 岳建设 . 铝电解槽用干式防渗耐火材料的开发及防渗机理研究[D]. 西安, 西安理工大学, 2007: 1-13. |
Yue J M . Exploit dry damming cell and on theme chanism of study prevent penetrate[D]. Xi’an: Xi’an University of Technology, 2007: 1-13. | |
24 | 张成行, 宋明刚, 钱开平, 等 . 铝电解槽用干式保温防渗料的研制及应用[J]. 耐火材料, 2003, (6): 339-341. |
Zhang C X , Song M G , Qian K P , et al . Development and application of insulating dry barrier for aluminum electrolytic cell[J]. Refractory Materials. 2003, (6): 339-341. | |
25 | 冯乃祥 . 铝电解[M]. 北京: 化学工业出版社. 2006: 203-205. |
Feng N X . Aluminum Electrolysis[M]. Beijing: Chemical Industry Press. 2006: 203-205. | |
26 | Bonadia P , Valenzuel F A O , Bittencourt L R , et al . Aluminosilicate refractories for aluminum cell linings[J]. American Ceramic Society Bulletin, 2005, 84(2): 26-30. |
27 | 杨帅 . 基于界面传热机理的铝电解槽综合热场分析模型及其应用[D]. 长沙: 中南大学, 2013: 67-69. |
Yang S . An interfacial heat transfer mechanism based integrated model and its application for thermal filed analysis in aluminum reduction[D]. Changsha: Central South University, 2013: 67-69. | |
28 | Pogodaev A M , Proshkin A V , Polyakov P V , et al . Processes in refractory materials of the cathode assembly of electrolysis cells for aluminum production[J]. Russian Journal of Nonferrous Metals, 2010, 51(4): 279-284. |
29 | Siljan O J . Sodium aluminium fluoride attack on alumino-silicate refractories-chemical reactions and mineral formation[D]. Norway: NTNU. 1990: 15-20. |
30 | 李秋霞, 刘永成, 荆碧, 等 . SiO2在真空低价氟化法炼铝过程的分布[J]. 真空科学与技术学报, 2011, 31(4): 490-494. |
Li Q X , Liu Y C , Jing B , et al . Possible reaction paths of silica in vacuum extraction of aluminum by fluoridization[J]. Journal of Vacuum Science and Technology, 2011, 31(4): 490-494. | |
31 | Lambotte G , Chartrand P . Thermodynamic optimization of the (Na2O+SiO2+NaF+SiF4) reciprocal system using the modified quasichemical model in the quadruplet approximation[J]. The Journal of Chemical Thermodynamics, 2011, 43(11): 1678-1699. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[6] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[7] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[11] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[12] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[13] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[14] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[15] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 280
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 558
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||