1 |
LiuG, GaoP X. A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies[J]. Catalysis Science & Technology, 2011, 1(4): 552-568.
|
2 |
BoningariT, PanagiotisG S. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations [J]. Journal of Catalysis, 2012, 288: 74-83.
|
3 |
ShiL N, ZhangX, ChenZ L. Removal of chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011, 45(2): 886-892.
|
4 |
ZhangX, LinS, ChenZ, et al. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism[J]. Water Research, 2011, 45(11): 3481-3488.
|
5 |
KimS A , Kamala-KannanS , LeeK J , et al. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite[J]. Chemical Engineering Journal, 2013, 217: 54-60.
|
6 |
LingL, PanB, ZhangW X. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV)[J]. Water Research, 2015, 71: 274-281.
|
7 |
ChenH, CaoY, WeiE, et al. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water[J]. Chemosphere, 2016, 146: 32-39.
|
8 |
HayhurstA N, NinomiyaY. Kinetics of the conversion of NO to N2, during the oxidation of iron particles by NO in a hot fluidised bed[J]. Chemical Engineering Science, 1998, 53(8): 1481-1489.
|
9 |
HayhurstA N, LawrenceA D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed[J]. Combustion & Flame, 1997, 110(3): 351-365.
|
10 |
GradońB, LasekJ. Investigations of the reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, 89(11): 3505-3509.
|
11 |
苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(1): 206-210.
|
|
SuY X, SuA L, ChengH. Experimental study on direct catalytic reduction of NO by metallic iron[J].Journal of China Coal Society, 2013, 38(1): 206-210.
|
12 |
MiuraK, NakagawaH, KitauraR, et al. Low-temperature conversion of NO to N2 by use of a novel Ni loaded porous carbon[J]. Chemical Engineering Science, 2001, 56(4): 1623-1629.
|
13 |
SunY P, LiX, CaoJ, et al. Characterization of zero-valent iron nanoparticles[J]. Adv. Colloid Interface Sci., 2006, 120(1): 47-56.
|
14 |
XiaoJ, XuQ, XuQ, et al. Direct promotion effect of Fe on no reduction by activated carbon loaded with Fe species[J]. Journal of Chemical Thermodynamics, 2016, 95: 216-230.
|
15 |
Illán-GómezM J, Linares-SolanoA, Salinas-MartinezD L C, et al. Nitrogen oxide (NO) reduction by activated carbons (1): The role of carbon porosity and surface area[J]. Energy & Fuels, 1993, 7(1): 146-154.
|
16 |
Illán-GómezM J, Linares-SolanoA, RadovicL R. NO reduction by activated carbons(5): Catalytic effect of iron[J]. Energy & Fuels, 1995, 9(3): 97-103.
|
17 |
Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(3): Influence of catalyst loading on the catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1): 104-111.
|
18 |
Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(4): Catalysis by calcium[J]. Energy & Fuels, 1995, 9(1): 112-118.
|
19 |
Illán-GómezM J, Linares-SolanoA, RadovicL R. NO reduction by activated carbons(2): Catalytic effect of potassium[J]. Fuel & Energy Abstracts, 1995, 36(1): 97-103.
|
20 |
Illán-GómezM J, Linares-SolanoA, LeceaS M D. NO reduction by activated carbon(6): Catalysis by transition metals[J]. Energy Fuels, 1995, 9(6): 976-983.
|
21 |
Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(7): Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10: 158-168.
|
22 |
TengH, SuubergE M. Chemisorption of nitric oxide on char(1): Reversible nitric oxide sorption[J]. Cheminform, 1993, 24(16): 478-483.
|
23 |
TengH, SuubergE M. Chemisorption of nitric oxide on char(2): Irreversible carbon oxide formation[J]. Industrial & Engineering Chemistry Research, 1993, 32(3): 416-423.
|
24 |
LiX, DongZ, DouJ, et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Processing Technology, 2016, 148: 91-98.
|
25 |
de FariaD L A, VenâncioS, de OliveiraM T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878.
|
26 |
胡涛, 路欣, 阎研, 等. 用纯铁氧化法生长的铁氧化物样品的Raman光谱研究[J].光谱学与光谱分析, 2004, 24(9): 1072-1074.
|
|
HuT, LuX, YanY, et al. Raman spectroscopic study on the iron oxide film prepared by iron oxidation method[J]. Spectroscopy and Spectral Analysis, 2004, 24(9): 1072-1074.
|
27 |
GrosvenorA P, KobeB A, BiesingerM C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564-1574.
|
28 |
胡慧萍, 王梦, 丁治英, 等. FT-IR、XPS和DFT研究水杨酸钠在针铁矿或赤铁矿上的吸附机理[J].物理化学学报, 2016, 32(8): 2059-2068.
|
|
HuH P, WangM, DingZ Y, et al. FT-IR, XPS and DFT study of the adsorption mechanism of sodium salicylate onto goethite or hematite[J]. Acta Phys.–Chim. Sin., 2016, 32(8): 2059-2068.
|
29 |
ZhangS, ZhangH, ZhangW, et al. Induced growth of Fe-Nx active sites using carbon templates[J]. Chinese Journal of Catalysis, 2018, (8): 1427-1435.
|