化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1375-1382.DOI: 10.11949/j.issn.0438-1157.20181277
程洁1(),郭亚军1(),王腾2,桂淼2,刘朝辉2,随志强2
收稿日期:
2018-10-31
修回日期:
2019-01-08
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
郭亚军
作者简介:
<named-content content-type="corresp-name">程洁</named-content>(1994—),女,硕士研究生,<email>794706968@qq.com</email>|郭亚军(1966—),女,博士,副教授,<email>879400635@qq.com</email>
基金资助:
Jie CHENG1(),Yajun GUO1(),Teng WANG2,Miao GUI2,Zhaohui LIU2,Zhiqiang SUI2
Received:
2018-10-31
Revised:
2019-01-08
Online:
2019-04-05
Published:
2019-04-05
Contact:
Yajun GUO
摘要:
在立式蒸汽发生器垂直管束间的气液两相流中,截面含气率是其中一个重要参数。使用γ射线法对高温高压下垂直管束间气液两相流截面含气率的分布规律进行了实验研究。实验压力分别为5、7、9 MPa,质量流速为300 kg/(m2?s),热力学干度的范围为0.003 ~ 0.4。实验得到了垂直管束间截面含气率随热力学干度、体积含气率和压力的变化关系;并与经典公式的计算结果对比发现,在低干度区域,实验结果与Miropolskii模型、Smith模型和Armand模型偏差较大,均大于30%,在高干度区域偏差较小;基于Armand理论,通过多元线性回归法拟合出本文工况下平均截面含气率的计算关联式,与日本核动力工程公司(NUPEC)的实验数据偏差小于15%。本研究对蒸汽发生器的结构设计和流动特性研究具有重要意义。
中图分类号:
程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382.
Jie CHENG, Yajun GUO, Teng WANG, Miao GUI, Zhaohui LIU, Zhiqiang SUI. Void fraction distribution of vapor-water two-phase flow in vertical tube bundles using gamma densitometer[J]. CIESC Journal, 2019, 70(4): 1375-1382.
测量参数 | 量程 | 测量仪表 | 精度 |
---|---|---|---|
质量流量/(kg/h) | 0~3000 | RHEONIK 质量流量计 | 0.05% |
进口压力/MPa | 0~68 | Rosemount3051压力变送器 | 0.1% |
温度/℃ | -200~400 | Φ3 mm T型热电偶 | ±0.4℃ |
预热段功率/kW | 0~700 | 电压电流变送器 | 0.1% |
表1 测量仪表参数
Table 1 Measuring instruments parameters
测量参数 | 量程 | 测量仪表 | 精度 |
---|---|---|---|
质量流量/(kg/h) | 0~3000 | RHEONIK 质量流量计 | 0.05% |
进口压力/MPa | 0~68 | Rosemount3051压力变送器 | 0.1% |
温度/℃ | -200~400 | Φ3 mm T型热电偶 | ±0.4℃ |
预热段功率/kW | 0~700 | 电压电流变送器 | 0.1% |
测量参数 | 不确定度/% |
---|---|
进口压力/MPa | 0.23 |
质量流速/(kg/(m2 | 0.26 |
热力学干度 | 5.02 |
体积含气率 | 5.97 |
截面含气率 | 6.75 |
表2 不确定度
Table 2 Summary of uncertainties
测量参数 | 不确定度/% |
---|---|
进口压力/MPa | 0.23 |
质量流速/(kg/(m2 | 0.26 |
热力学干度 | 5.02 |
体积含气率 | 5.97 |
截面含气率 | 6.75 |
文献模型 | 经验关联式 | 适用条件 |
---|---|---|
Miropolskii[ | D=6.7~17.7 mm管束 | |
Smith[ | D=6~38 mm单管,G=650~2500 kg/(m2?s) | |
Armand[ | D=56 mm单管,G=2000 kg/(m2?s) |
表3 截面含气率经典关联式
Table 3 Void fraction correlation discussed in this study
文献模型 | 经验关联式 | 适用条件 |
---|---|---|
Miropolskii[ | D=6.7~17.7 mm管束 | |
Smith[ | D=6~38 mm单管,G=650~2500 kg/(m2?s) | |
Armand[ | D=56 mm单管,G=2000 kg/(m2?s) |
1 | 吕俊复. 气液两相流动与沸腾传热[M]. 北京: 科学出版社, 2017: 457. |
LyuJ F. Gas-liquid Two-phase Flow and Boiling Heat Transfer[M]. Beijing: Science Press, 2017: 457. | |
2 | 阎昌琪. 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社, 2007. |
YanC Q. Gas-liquid Two-phase Flow[M]. Harbin: Harbin Engineering University Press, 2007. | |
3 | WangF, JinN D, WangD Y, et al. Measurement of gas phase characteristics in bubbly oil-gas-water flows using bi-optical fiber and high-resolution conductance probes[J]. Experimental Thermal and Fluid Science, 2017, 88: 361-375. |
4 | RoshaniN. A high performance gas-liquid two-phase flow meter based on gamma-ray attenuation and scattering[J].Nuclear Science & Techniques, 2017, 28(11): 169. |
5 | 赵安, 韩云峰, 张宏鑫, 等. 气液两相流段塞流持气率快关阀法优化设计[J]. 化工学报, 2016, 67(4): 1159-1168. |
ZhaoA, HanY F, ZhangH X, et al. Optimal design for measuring gas holdup in gas-liquid two-phase slug flow using quick closing valve method[J]. CIESC Journal, 2016, 67(4): 1159-1168. | |
6 | SardeshppandeM V, HarinarayanS, RanadeV V. Void fraction measurement using electrical capacitance tomography and high speed photography[J]. Chemical Engineering Research and Design, 2015, 94: 1-11. |
7 | DragomirescuA, PincovschiI, MiuM. Assessment of global void fraction in a gas-liquid stirred vessel by digital image processing[J]. Energy Procedia, 2017, 112: 217-224. |
8 | JiaJ, BabatundeA, WangM. Void fraction measurement of gas-liquid two-phase flow from differential pressure[J]. Flow Measurement & Instrumentation, 2015, 41: 75-80. |
9 | 唐人虎, 陈听宽, 罗毓珊, 等. 高温高压下用光纤探针测量截面含汽率的实验研究[J]. 化工学报, 2001, 52(6): 560-563. |
TangR H, ChenT K, LuoY S, et al. Void fraction measurement by using optical probes at high temperature and high pressure[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(6): 560-563. | |
10 | NazemiE, FefhhiS A H. Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation[J]. Nuclear Engineering & Technology, 2016, 48(1): 64-71. |
11 | ZhaoY, BiQ C, HuR C. Recognition and measurement in the flow pattern and void fraction of gas-liquid two-phase flow in vertical upward pipes using the gamma densitometer[J]. Applied Thermal Engineering, 2013, 60(1/2): 398-410. |
12 | ZhaoY, BiQ C, BiY J, et al. Void fraction measurement in steam-water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions[J]. Flow Measurement and Instrumentation, 2016, 49: 18-30. |
13 | 吕海财, 毕勤成, 赵于, 等.伽马射线法测量亚临界汽-水两相流截面含气率[C]//中国工程热物理学会. 2015. |
LyuH C, BiQ C, ZhaoY, et al. Measurement of void fraction in subcritical steam water two-phase flow by gamma ray method[C]//Chinese Society of Engineering Thermophysics. 2015. | |
14 | PanY Z, MaY G, HuangS F, et al. A new model for volume fraction measurements of horizontal high-pressure wet gas flow using gamma-based techniques[J]. Experimental Thermal and Fluid Science, 2018, 96: 311-320. |
15 | 徐国平, 王启杰. 气液两相流沿垂直向下横掠水平管束时的流型及其转变特性[J]. 化工学报, 1993, 44(2): 250-253. |
XuG P, WangQ J. Gas-liquid two-phase flow patterns and their transition characteristics in vertical up and downflow across a horizontal tube bundle[J]. Journal of Chemical Industry and Engineering (China), 1993, 44(2): 250-253. | |
16 | 陈斌, 傅宇晨, 郭烈锦, 等. 水平管束间气液两相流局部含气率分布的实验研究[J]. 化工学报, 2003, 54(3): 316-320. |
ChenB, FuY C, GuoL J, et al. Experimental investigation of distribution of void fraction between horizontal tube bundle[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(3): 316-320. | |
17 | 洪文鹏, 王宣宇, 陈柄君. 气液两相流绕管束流动压降特性实验研究[J]. 东北电力大学学报, 2012, 32(6): 67-71. |
HongW P, WangX Y, ChenB J. Experimental investigation of gas-liquid two-phase pressure drop across tube bundle[J]. Journal of Northeast Dianli University, 2012, 32(6): 67-71. | |
18 | ClarkC, GriffithsM, ChenS W, et al. Experimental study of void fraction in an 8×8 rod bundle at low pressure and low liquid flow conditions[J]. International Journal of Multiphase Flow, 2014, 62: 87-100. |
19 | KanizawaF T, RibatskiG. Two-phase flow patterns across triangular tube bundles for air-water upward flow[J]. International Journal of Multiphase Flow, 2016, 80(80): 43-56. |
20 | OzakiT, SuzukiR, HibikiT, et al. Development of drift-flux model based on 8*8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions[J]. Nucl. Sci. Technol., 2013, 50: 563-580. |
21 | OzakiT, HibikiT. Drift-flux model for rod bundle geometry[J]. Prog. Nucl. Energy, 2015, 83: 229-247. |
22 | HibikiT, MaoK, OzakiT. Development of void fraction-quality correlation for two-phase flow in horizontal and vertical tube bundles[J]. Progress in Nuclear Energy, 2017, 97: 38-52. |
23 | SmithS L. Void fraction in two-phase flow: a correlation based upon an equal velocity heat model[J]. Proc. Instn. Mech. Engrs., 1968, 184: 647-664. |
24 | 朱晓静, 毕勤成. 垂直上升内螺纹管中高压汽-水两相流截面含汽率的测量[J]. 西安交通大学学报, 2015, 49(3): 50-55. |
ZhuX J, BiQ C. Measurement of void fraction of high pressure steam water two-phase flow in vertical upward ribbed tube[J]. Journal of Xi an Jiaotong University, 2015, 49(3): 50-55. | |
25 | HookerH H, PopperG F. A gamma-ray attenuation method for void fraction determinations in experimental boiling heat transfer test facilities[R]. Argonne National Laboratory, 1958. |
26 | ColemanH W, SteeleW G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 2015, 33(33): 1888-1896. |
27 | CorreJ M L, BergmannU C, HallehnA, et al. Measurements of local two-phase flow parameters in fuel bundle under BWR operating conditions[J]. Nuclear Engineering & Design, 2017, 336(2018): 15-23. |
28 | GrahamB W. One-dimensional Two-phase Flow[M]. New York: McGraw-Hill, 1969. |
29 | ArmandA A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izv Vses Teploteck Inst, 1946, 828(1): 16-23. |
30 | 胡日查, 刘春龙, 毕勤成, 等. γ射线法测量亚临界汽-水两相流截面含气率的实验研究[J]. 热能动力工程, 2015, 30(6): 842-847. |
HuR C, LiuC L, BiQ C, et al. Experimental study of the γ-ray method for measuring the gas content in a cross section with a subcritical steam-water two-phase flow[J]. Journal of Engineering for Thermal Energy & Power, 2015, 30(6): 842-847. | |
31 | MiropolakiiZ L, SnelobeP E, KalamesebeA E. Void fraction of water-steam mixture flow with or without heat transfer[J]. Journal of Nuclear Science & Technology, 1971, 5(19): 374-379. |
32 | 黄承德. 锅炉水动力学及锅炉内传热[M]. 北京: 机械工业出版社, 1982. |
HuangC D. Boiler Hydrodynamics and Internal Heat Transfer[M]. Beijing: China Machine Press, 1982. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[8] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[9] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[10] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[11] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[12] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[13] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[14] | 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869. |
[15] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||