化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1904-1912.DOI: 10.11949/j.issn.0438-1157.20181336
谢昭明1(),邓容锐1,刘作华1,邓丽1,李千文2,张柱1,殷兆迁2,陶长元1
收稿日期:
2018-11-15
修回日期:
2019-03-08
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
谢昭明
作者简介:
谢昭明(1967—),男,博士,副教授,<email>xiezm@cqu.edu.cn</email>
基金资助:
Zhaoming XIE1(),Rongrui DENG1,Zuohua LIU1,Li DENG1,Qianwen LI2,Zhu ZHANG1,Zhaoqian YIN2,Changyuan TAO1
Received:
2018-11-15
Revised:
2019-03-08
Online:
2019-05-05
Published:
2019-05-05
Contact:
Zhaoming XIE
摘要:
转炉钒渣焙烧提钒技术效率低,过程涉及化学反应、传递及相变过程,蕴含物相分形生长的动力学行为。对钒渣分形变化规律的研究有助于促进钒的定向转化,进而对工业提钒具有指导意义。根据金相电镜图,使用“周长-面积法”对不同焙烧条件下钒渣粉体分形维数进行计算,得到分形维数变化与物相转化的规律。结果表明,焙烧前硅相、钒相紧密包裹,分形维数数值为1.60~2.00;加入碳酸钠焙烧后尖晶石破坏,钒相逐渐分离,使分形维数小于1.20;随着钠盐加入量的增加,物相分形维数逐渐下降;二次焙烧后,稳定的钒酸钠生成,体系趋于稳定,使得分形维数进一步下降为1.10~1.20。
中图分类号:
谢昭明, 邓容锐, 刘作华, 邓丽, 李千文, 张柱, 殷兆迁, 陶长元. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019, 70(5): 1904-1912.
Zhaoming XIE, Rongrui DENG, Zuohua LIU, Li DENG, Qianwen LI, Zhu ZHANG, Zhaoqian YIN, Changyuan TAO. Evolution behavior of fractal growth of sodium roasting converter vanadium slag powder[J]. CIESC Journal, 2019, 70(5): 1904-1912.
Fe | O | Si | V | Ti | Mn | Al | Cr |
---|---|---|---|---|---|---|---|
32.22 | 23.89 | 10.67 | 9.16 | 7.01 | 6.45 | 2.77 | 2.67 |
表1 本实验所使用转炉钒渣的主要化学成分(质量分数)
Table 1 Main chemical composition of converter vanadium slag used in this experiment/%(mass)
Fe | O | Si | V | Ti | Mn | Al | Cr |
---|---|---|---|---|---|---|---|
32.22 | 23.89 | 10.67 | 9.16 | 7.01 | 6.45 | 2.77 | 2.67 |
Composition | Content |
---|---|
fayalite | 38.71 |
glass phase | 29.65 |
chrome vanadium spinel | 10.67 |
peridot | 2.82 |
pseudobrookite | 2.22 |
calciferrite | 1.92 |
表2 转炉钒渣精粉的主要物相组成(质量分数)
Table 2 Main phase compositions in converter vanadium slag fine powder/%(mass)
Composition | Content |
---|---|
fayalite | 38.71 |
glass phase | 29.65 |
chrome vanadium spinel | 10.67 |
peridot | 2.82 |
pseudobrookite | 2.22 |
calciferrite | 1.92 |
No. | Conditions |
---|---|
1 | 100 g converter vanadium slag fine powder |
2 | 100 g converter vanadium slag fine powder and 12.5 g sodium carbonate |
3 | 100 g converter vanadium slag fine powder and 25 g sodium carbonate |
表3 钒渣粉体样品制样条件
Table 3 Conditions for sample preparation of vanadium slag powder
No. | Conditions |
---|---|
1 | 100 g converter vanadium slag fine powder |
2 | 100 g converter vanadium slag fine powder and 12.5 g sodium carbonate |
3 | 100 g converter vanadium slag fine powder and 25 g sodium carbonate |
Composition | Content |
---|---|
fayalite | 31.52 |
oxidized chrome vanadium spinel | 31.12 |
chrome vanadium spinel | 14.42 |
glass phase | 13.91 |
ferric vanadate | 6.67 |
pseudobrookite | 1.98 |
iron oxide | 1.58 |
picotite | 1.00 |
表4 熟料1的主要物相组成(质量分数)
Table 4 Main phase compositions in clinker 1/%(mass)
Composition | Content |
---|---|
fayalite | 31.52 |
oxidized chrome vanadium spinel | 31.12 |
chrome vanadium spinel | 14.42 |
glass phase | 13.91 |
ferric vanadate | 6.67 |
pseudobrookite | 1.98 |
iron oxide | 1.58 |
picotite | 1.00 |
Composition | Content |
---|---|
sodium vanadate | 15.89 |
iron oxide | 12.63 |
chrome vanadium spinel | 5.66 |
pseudobrookite | 5.26 |
picotite | 2.55 |
sodium carbonate | 0.58 |
calcium vanadate | 0.69 |
表5 熟料2的主要物相组成(质量分数)
Table 5 Main phase compositions in clinker 2/%(mass)
Composition | Content |
---|---|
sodium vanadate | 15.89 |
iron oxide | 12.63 |
chrome vanadium spinel | 5.66 |
pseudobrookite | 5.26 |
picotite | 2.55 |
sodium carbonate | 0.58 |
calcium vanadate | 0.69 |
Composition | Content |
---|---|
acmite | 23.26 |
iron oxide | 21.64 |
sodium vanadate | 10.05 |
sodium carbonate | 8.88 |
titanaugite | 8.22 |
soda feldspar | 7.66 |
pseudobrookite | 4.82 |
fayalite | 2.36 |
sodium carbonate | 2.10 |
ferric vanadate | 1.94 |
表6 熟料3的主要物相组成(质量分数)
Table 6 Main phase compositions in clinker 3/%(mass)
Composition | Content |
---|---|
acmite | 23.26 |
iron oxide | 21.64 |
sodium vanadate | 10.05 |
sodium carbonate | 8.88 |
titanaugite | 8.22 |
soda feldspar | 7.66 |
pseudobrookite | 4.82 |
fayalite | 2.36 |
sodium carbonate | 2.10 |
ferric vanadate | 1.94 |
No. | Conditions |
---|---|
4 | 100g clinker 3 and 25g sodium carbonate |
5 | 100g clinker 3 and 100g fine powder |
表7 钒渣粉体样品制样条件
Table 7 Conditions for sample preparation of vanadium slag powder
No. | Conditions |
---|---|
4 | 100g clinker 3 and 25g sodium carbonate |
5 | 100g clinker 3 and 100g fine powder |
Composition | Content |
---|---|
sodium vanadate | 23.19 |
acmite | 20.19 |
iron oxide | 12.63 |
soda feldspar | 8.79 |
sodium carbonate | 7.09 |
titanaugite | 3.57 |
pseudobrookite | 3.23 |
glass phase | 2.78 |
fayalite | 1.15 |
peridot | 0.49 |
表8 熟料4的主要物相组成(质量分数)
Table 8 Main phase compositions in clinker 4/%(mass)
Composition | Content |
---|---|
sodium vanadate | 23.19 |
acmite | 20.19 |
iron oxide | 12.63 |
soda feldspar | 8.79 |
sodium carbonate | 7.09 |
titanaugite | 3.57 |
pseudobrookite | 3.23 |
glass phase | 2.78 |
fayalite | 1.15 |
peridot | 0.49 |
Composition | Content |
---|---|
acmite | 26.04 |
ferric oxide | 25.05 |
sodium silicate | 7.60 |
albite | 6.58 |
titanaugite | 5.97 |
pseudobrookite | 4.54 |
sodium carbonate | 3.90 |
ferrochrome | 3.63 |
sodium vanadate | 3.57 |
表9 熟料5的主要物相组成(质量分数)
Table 9 Main phase compositions in clinker 5/%(mass)
Composition | Content |
---|---|
acmite | 26.04 |
ferric oxide | 25.05 |
sodium silicate | 7.60 |
albite | 6.58 |
titanaugite | 5.97 |
pseudobrookite | 4.54 |
sodium carbonate | 3.90 |
ferrochrome | 3.63 |
sodium vanadate | 3.57 |
1 | 王俊, 付自碧, 蒋霖 . 高钙高磷钒渣酸浸除磷研究[J]. 稀有金属, 2018, 42(3): 331-336. |
Wang J , Fu Z B , Jiang L . Phosphorus removal of high calcium and high phosphorus vanadium slag in acid system[J]. Chinese Journal of Rare Metals, 2018, 42(3): 331-336. | |
2 | Wang X , Xiao C , Wang M , et al . Removal of silicon from vanadate solution using ion exchange and sodium alumino-silicate precipitation[J]. Hydrometallurgy, 2011, 107(3/4): 133-136. |
3 | Aarabi-Karasgani M , Rashchi F , Mostoufi N , et al . Leaching of vanadium from LD converter slag using sulfuric acid[J]. Hydrometallurgy, 2010, 102(1/2/3/4): 14-21. |
4 | Nicholas N J , Da Silva G , Kentish S , et al . Use of vanadium(V) oxide as a catalyst for CO2 hydration in potassium carbonate systems[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3029-3039. |
5 | Xiao X , Zhang H , Chai G , et al . A cost-effective process to prepare VO2 (M) powder and films with superior thermochromic properties[J]. Materials Research Bulletin, 2014, 51: 6-12. |
6 | 吴恩辉, 侯静, 李军 . 钒铬渣氧化钙化焙烧-酸浸提钒实验研究[J]. 稀有金属与硬质合金, 2017, 45(6): 8-13. |
Wu E H , Hou J , Li J . Experimental study on vanadium extraction by oxidation calcification roasting and acid leaching of vanadium- chromium slag[J]. Rare Metals and Cemented Carbides, 2017, 45(6): 8-13. | |
7 | 李千文, 刘丰强, 邓孝伯, 等 . 攀钢转炉钒渣钠化焙烧实验室研究[J]. 钢铁钒钛, 2012, 33(4): 7-11. |
Li Q W , Liu F Q , Deng X B , et al . Study on roasting of Pangang converter vanadium slag[J]. Iron Steel Vanadium Titanium, 2012, 33(4): 7-11. | |
8 | 宋文臣, 李宏 . 熔融钒渣直接氧化钠化提钒新工艺研究[J]. 钢铁钒钛, 2012, 33(6): 1-5. |
Song W C , Li H . A new process for vanadium extraction from molten vanadium slag by direct oxidation and sodium activating method[J]. Iron Steel Vanadium Titanium, 2012, 33(6): 1-5. | |
9 | Wei X , Xu M , Chen J , et al . Fractal analysis of Mo and Nb effects on grain boundary character and hot cracking behavior for Ni-Cr-Fe alloys[J]. Materials Characterization, 2018, 145: 65-76. |
10 | Wang J Z , Xi Z P , Tang H P , et al . Fractal dimension for porous metal materials of FeCrAl fiber[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1046-1051. |
11 | Tang H P , Wang J Z , Zhu J L , et al . Fractal dimension of pore-structure of porous metal materials made by stainless steel powder[J]. Powder Technology, 2012, 217: 383-387. |
12 | Krohn C E . Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research, 1988, 93(B4): 3297-3305. |
13 | Kajita S , Ito A M , Ohno N . Fractality and growth of He bubbles in metals[J]. Physics Letters A, 2017, 381(29): 2355-2362. |
14 | Fan X , Hou J , Sun D , et al . Mn-oxides catalyzed periodic current oscillation on the anode[J]. Electrochimica Acta, 2013, 102: 466-471. |
15 | Li H Y , Wang K , Hua W H , et al . Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate[J]. Hydrometallurgy, 2016, 160: 18-25. |
16 | Peng H , Liu Z , Tao C . Selective leaching of vanadium from chromium residue intensified by electric field[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1252-1257. |
17 | Zhang J , Zhang W , Zhang L , et al . Mechanism of vanadium slag roasting with calcium oxide[J]. International Journal of Mineral Processing, 2015, 138: 20-29. |
18 | 廖世明 . 国外钒冶金[M]. 北京: 冶金工业出版社, 1985. |
Liao S M . Vanadium Metallurgy Abroad [M]. Beijing: Metallurgical Industry Press, 1985. | |
19 | 刘作华, 阿依努尔·努尔艾合买提, 连欣, 等 . 空气强化转炉钒渣湿法浸出行为[J]. 化工学报, 2014, 65(9): 3464-3469. |
Liu Z H , Ayinuer N , Lian X , et al . Air strengthening of hydrometallurgy process for leaching vanadium from converter slag[J]. CIESC Journal, 2014, 65(9): 3464-3469. | |
20 | Mayka S R , Matthias H , Celso P F , et al . Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano- and micro-computed tomography[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 298-311. |
21 | Qin L , Zhai C , Liu S , et al . Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coal bed methane recovery[J]. Powder Technology, 2018, 325: 11-20. |
22 | Vahedi A , Gorczyca B . Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions[J]. Water Res., 2012, 46(13): 4188-94. |
23 | Zhang G Q , Zhang T A , Lyu G Z , et al . Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1): 21-26. |
24 | Ye P , Wang X , Wang M , et al . Recovery of vanadium from stone coal acid leaching solution by coprecipitation, alkaline roasting and water leaching[J]. Hydrometallurgy, 2012, 117/118: 108-115. |
25 | Wang F , Zhang Y M , Huang J , et al . Mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes from stone coal[J]. Rare Metals, 2013, 32(1): 57-62. |
26 | Shao Y , Feng Q , Chen Y , et al . Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst[J]. Hydrometallurgy, 2009, 96(1/2): 166-170. |
27 | 李京, 施哲, 梁晨, 等 . 低钙化焙烧-碳酸钠浸出提钒试验[J]. 矿冶, 2015, 24(5): 52-56. |
Li J , Shi Z , Liang H , et al . Experiment on extracting vanadium by the method of low calcium roasting- sodium carbonate leaching [J]. Mining and Metallurgy, 2015, 24(5): 52-56. | |
28 | Wang L , Liao C , Yang Y , et al . Effects of organic acids on the leaching process of ion-adsorption type rare earth ore[J]. Journal of Rare Earths, 2017, 35(12): 1233-1238. |
29 | Heidorn S C , Bertram C , Morgenstern K . The fractal dimension of ice on the nanoscale[J]. Chemical Physics Letters, 2016, 665: 1-5. |
30 | 聂笃宪, 曾文曲, 文有为 . 分形维数计算方法的研究[J]. 微机发展, 2004, (9): 17-19+22. |
Nie D X , Zeng W Q , Wen Y W . Fractal dimension study of calculating method[J]. Microcomputer Development, 2004, (9): 17-19+22. | |
31 | Nayak S R , Mishra J , Palai G . A modified approach to estimate fractal dimension of gray scale images[J]. Optik, 2018, 161: 136-145. |
32 | Jing J , Feng P , Wei S , et al . Investigation on the surface morphology of Si3N4 ceramics by a new fractal dimension calculation method[J]. Applied Surface Science, 2016, 387: 812-821. |
33 | Zhu J , Zheng Y , Yang Y , et al . Research on the volume and line fractal dimension of fragments from the dynamic explosion fragmentation of metal shells[J]. Powder Technology, 2018, 331: 129-136. |
34 | Yang X , Wang F , Yang X , et al . Fractal dimension in concrete and implementation for meso-simulation[J]. Construction and Building Materials, 2017, 143: 464-472. |
35 | 谢和平 . 分形应用中的数学基础与方法[M]. 北京: 科学出版社, 1998. |
Xie H P . Mathematical Basis and Method in Fractal Application [M]. Beijing: Science Press, 1998. | |
36 | Borodich F M . Fractals and fractal scaling in fracture mechanics[J]. International Journal of Fracture, 1999, 95: 239-259. |
37 | 周兴林, 肖神清, 刘万康, 等 . 沥青路面表面纹理的多重分形特征及其磨光行为[J]. 东南大学学报(自然科学版), 2018, 48(1): 175-180. |
Zhou X L , Xiao S Q , Liu W K , et al . Multifractal characteristics and polishing behaviors of surface texture on asphalt pavement[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 175-180. | |
38 | 田杰, 陈杰, 张宇河 . 基于小波变换及分形特征的目标检测与识别[J]. 北京理工大学学报, 2003, (1): 95-99. |
Tian J , Chen J , Zhang Y H . Target detection and recognition based on wavelet transform and fractal features[J]. Journal of Beijing Institute of Technology, 2003, (1): 95-99. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[3] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[4] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[5] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[6] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[7] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[8] | 尚慧俊, 黎亨利, 刘家义, 潘锋, 杜占, 孙林兵. Co对WO3-Co3O4预还原的影响及其产物碳化性能[J]. 化工学报, 2022, 73(12): 5592-5604. |
[9] | 张志敏, 丁雪兴, 张兰霞, 力宁, 司佳鑫. 浮环密封端面分形磨损预估模型及数值分析[J]. 化工学报, 2022, 73(12): 5526-5536. |
[10] | 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
[11] | 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84. |
[12] | 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139. |
[13] | 陆海峰, 曹嘉琨, 郭晓镭, 刘海峰. 基于颗粒间相互作用的细颗粒粉体料仓下料过程分析[J]. 化工学报, 2021, 72(8): 4047-4054. |
[14] | 侯玉洁, 梁琳, 江子旭, 闫兴清, 于小哲, 吕先舒, 喻健良. 惰性气体对粉尘爆炸泄放特性影响的实验研究[J]. 化工学报, 2021, 72(5): 2887-2895. |
[15] | 周剑, 江倩, 杨怡, 冯厦厦, 仲兆祥, 邢卫红. 烧结助剂对低温制备碳化硅多孔陶瓷性能的影响[J]. 化工学报, 2021, 72(4): 2293-2299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||