化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2456-2471.DOI: 10.11949/0438-1157.20181534
收稿日期:
2019-01-02
修回日期:
2019-04-12
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
周帼彦
作者简介:
高兴辉(1993—),男,硕士研究生,<email>961277609@qq.com</email>
Xinghui GAO(),Guoyan ZHOU(),Shandong TU
Received:
2019-01-02
Revised:
2019-04-12
Online:
2019-07-05
Published:
2019-07-05
Contact:
Guoyan ZHOU
摘要:
由于内部流场信息缺乏,结构参数对流体流动的影响规律不明确,致使缠绕管式换热器壳程强化传热机理不明晰,阻碍其设计准则的进一步规范化和通用。针对上述问题,对缠绕管式换热器壳程流体流动进行几何建模及数值模拟,并通过文献中实验数据进行验证,进而基于该模型对壳程流体流场特性进行详细分析,分析关键结构参数对其壳程传热与阻力性能的影响,并探讨其强化传热机理。结果表明:Realizable k-ε湍流模型可较为准确地描述壳程流体流动;在双对数坐标系内,壳程Nusselt数随Reynolds数的增大而增大,阻力系数f则呈线性降低的趋势;壳程Nusselt数随缠绕管直径d与平均缠绕直径D的增大而增大,随螺距S的增大而减小,阻力系数f则相反;缠绕管直径d对壳程流体传热与阻力性能的影响最大,平均缠绕直径D的影响最小;增大缠绕管直径d与平均缠绕直径D有利于破坏流体速度边界层,增强流体扰动,加快温升速度,强化壳程传热,而增大螺距S则使速度边界层变厚,减小流动阻力的同时降低温升速度,不利于壳程强化传热。
中图分类号:
高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471.
Xinghui GAO, Guoyan ZHOU, Shandong TU. Study on effects of structural parameters on shell-side heat transfer enhancement in spiral wound heat exchangers[J]. CIESC Journal, 2019, 70(7): 2456-2471.
Structural parameter | Numerical value/mm |
---|---|
shell length H | 400 |
shell diameter Ds | 150 |
central cylinder diameter Dc | 60 |
heat exchange height h | 270 |
winding tube diameter d | 6—15 |
pitch S | 10—20 |
average winding diameter D | 99—111 |
表1 缠绕管式换热器主要结构尺寸
Table 1 Main structure parameters of spiral wound heat exchanger
Structural parameter | Numerical value/mm |
---|---|
shell length H | 400 |
shell diameter Ds | 150 |
central cylinder diameter Dc | 60 |
heat exchange height h | 270 |
winding tube diameter d | 6—15 |
pitch S | 10—20 |
average winding diameter D | 99—111 |
Structural parameter | Numerical value |
---|---|
shell length/mm | 606 |
shell diameter/mm | 159 |
central cylinder diameter/mm | 68 |
winding tube diameter/mm | 12 |
winding angle/(°) | 20 |
inner winding diameter/mm | 92 |
outer winding diameter/mm | 126 |
表2 文献[30]缠绕管式换热器样机主要结构参数尺寸
Table 2 Main structure parameters of spiral wound heat exchanger prototype in Ref. [30]
Structural parameter | Numerical value |
---|---|
shell length/mm | 606 |
shell diameter/mm | 159 |
central cylinder diameter/mm | 68 |
winding tube diameter/mm | 12 |
winding angle/(°) | 20 |
inner winding diameter/mm | 92 |
outer winding diameter/mm | 126 |
Error | Output temperature To/℃ | Pressure drop ΔP/Pa | ||||
---|---|---|---|---|---|---|
Standard k-ε | RNG k-ε | Realizable k-ε | Standard k-ε | RNG k-ε | Realizable k-ε | |
maximum error | 6.80 | 6.77 | 5.31 | 17.90 | 17.20 | 17.05 |
minimum error | 5.50 | 4.93 | 4.37 | 0.72 | 0.26 | 0.86 |
average error | 6.30 | 5.96 | 5.12 | 8.52 | 8.40 | 8.29 |
表3 误差分析
Table 3 Error analysis/%
Error | Output temperature To/℃ | Pressure drop ΔP/Pa | ||||
---|---|---|---|---|---|---|
Standard k-ε | RNG k-ε | Realizable k-ε | Standard k-ε | RNG k-ε | Realizable k-ε | |
maximum error | 6.80 | 6.77 | 5.31 | 17.90 | 17.20 | 17.05 |
minimum error | 5.50 | 4.93 | 4.37 | 0.72 | 0.26 | 0.86 |
average error | 6.30 | 5.96 | 5.12 | 8.52 | 8.40 | 8.29 |
1 | 丁超, 胡海涛, 丁国良, 等. 运行工况对 LNG 绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423. |
DingC, HuH T, DingG L, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423. | |
2 | ZengM, ZhangG P, LiY, et al. Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger[J]. Heat Transfer Engineering, 2015, 36(9): 790-805. |
3 | LuX, DuX P, ZengM, et al. Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions[J]. Applied Thermal Engineering, 2014, 70(2): 1216-1227. |
4 | LuX, ZhangG P, ChenY T, et al. Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 1104-1116. |
5 | 于清野. 缠绕管式换热器计算方法研究[D]. 大连: 大连理工大学, 2011. |
YuQ Y. Research on calculation method for helical wound coil tube heat exchangers[D]. Dalian: Dalian University of Technology, 2011. | |
6 | 薛佳幸. 缠绕管式换热器换热工艺研究[D]. 兰州: 兰州交通大学, 2015. |
XueJ X. Research on heat transfer process of coil-wound heat exchangers[D]. Lanzhou: Lanzhou Jiaotong University, 2015. | |
7 | ShukriT. LNG technology selection[J]. Hydrocarbon Engineering, 2004, 9(2): 71-76. |
8 | NeeraasB O. Condensation of hydrocarbon mixtures in coil wound LNG heat exchangers, tube-side heat transfer and pressure drop[D]. Trondheim: Norwegian Institute of Technology, 1993. |
9 | SalimpourM R. Heat transfer coefficients of shell and coiled tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 203-207. |
10 | GhorbaniN, TaherianH, GorjiM, et al. An experimental study of thermal performance of shell and coil heat exchangers[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 775-781. |
11 | 季鹏, 李玉星, 王武昌, 等. 结构参数对绕管式换热器传热特性的影响[J]. 油气储运, 2015, 34(8): 886-891. |
JiP, LiY X, WangW C, et al. Effect of structural parameter on heat transfer performance of coil-wound heat exchange[J]. Oil & Gas Storage and Transportation, 2015, 34(8): 886-891. | |
12 | GenićS B, JaćimovićB M, JarićM S, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300. |
13 | 吴志勇, 陈杰, 浦晖, 等. LNG绕管式换热器壳侧过热态流动的数值模拟[J]. 煤气与热力, 2014, 34(8): 6-11. |
WuZ Y, ChenJ, PuH, et al. Numerical simulation of superheated flow on the shell side of LNG coiled heat exchanger[J]. Gas & Heat, 2014, 34(8): 6-11. | |
14 | 张周卫. 单股流螺旋缠绕管式换热器设计计算方法: 201210297815. 1[P]. 2012-09. |
ZhangZ W. Design and calculation method of single-strand spiral-twisted tube heat exchanger: 201210297815.1[P]. 2012-09. | |
15 | 张周卫. 双股流螺旋缠绕管式换热器设计计算方法: 201210303321. X[P]. 2013-01. |
ZhangZ W. Design and calculation method of double-strand spiral-twisted tube heat exchanger:201210303321.X[P]. 2013-01. | |
16 | 张周卫. 低温液氮用一级回热多股流换热装备: 201310387575. 9[P]. 2013-08. |
ZhangZ W. One-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310387575.9[P]. 2013-08. | |
17 | 张周卫. 低温液氮用二级回热多股流换热装备: 201310361165. 7[P]. 2013-08. |
ZhangZ W. Two-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310361165.7[P]. 2013-08. | |
18 | 张周卫. 低温液氮用三级回热多股流换热装备: 201310358118. 7[P]. 2013-08. |
ZhangZ W. Three-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310358118.7[P]. 2013- 08. | |
19 | WuJ, LiuS, WangM, et al. Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change[J]. Applied Thermal Engineering, 2018, 134: 360-368. |
20 | JamshidiN, FarhadiM, GanjiD D, et al. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers[J]. Applied Thermal Engineering, 2013, 51(1/2): 644-652. |
21 | RenY, CaiW, ChenJ, et al. Numerical study on the shell-side flow and heat transfer of superheated vapor flow in spiral wound heat exchanger under rolling working conditions[J]. International Journal of Heat and Mass Transfer, 2018, 121: 691-702. |
22 | RenY, CaiW, JiangY, et al. Numerical study on shell-side flow and heat transfer of spiral-wound heat exchanger under sloshing working conditions[J]. Applied Thermal Engineering, 2018, 134: 287-297. |
23 | 李剑锐, 陈杰, 浦晖, 等. 绕管式换热器壳侧降膜流动和相变传热的数值模拟[J]. 化工学报, 2015, 66(S2): 40-49. |
LiJ R, ChenJ, PuH, et al. Simulation of falling film flow and heat transfer at shell-side of coil-wound heat exchanger[J]. CIESC Journal, 2015, 66(S2): 40-49. | |
24 | PacioJ C, DoraoC A. A review on heat exchanger thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51(7): 366-379. |
25 | 徐烨琨, 刘成, 李永辉. 折流杆换热器的研究方法进展[J]. 化工进展, 2014, 33(7): 1671-1676. |
XuY K, LiuC, LiY H. Progress of rod baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1671-1676. | |
26 | 都跃良, 张贤安. 缠绕管式换热器的管理及其应用前景分析[J]. 化工机械, 2005, 32(3): 181-185. |
DuY L, ZhangX A. The management and analysis on application prospect of coiled wound heat exchanger[J]. Chemical Engineering & Machinery, 2005, 32(3): 181-185. | |
27 | 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 42. |
WangF J. Computational Fluid Dynamics Analysis—Principles and Applications of CFD Software[M]. Beijing: Tsinghua University Press, 2004: 42. | |
28 | 王定标, 夏春杰, 董永申. 凹凸版换热器强化传热的数值模拟[J]. 化工进展, 2014, 33(1): 106-112. |
WangD B, XiaC J, DongY S. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 106-112. | |
29 | 夏春杰, 王定标, 董永申, 等. 基于遗传算法的蜂窝板换热器多目标优化[J]. 高校化学工程学报, 2015, (5): 1201-1206. |
XiaC J, WangD B, DongY S, et al. Multi-objective optimization of honeycomb plate heat transfer exchangers using a genetic algorithm method[J]. Journal of Chemical Engineering of Chinese Universities, 2015, (5): 1201-1206. | |
30 | 邓静. 螺旋缠绕管换热器流动传热性能研究[D]. 郑州:郑州大学, 2016. |
DengJ. The heat transfer and flow characteristics analysis of helically coiled tube heat exchanger[D]. Zhengzhou: Zhengzhou University, 2016. | |
31 | 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004: 21. |
GuoZ Y, HuangS Y. Filed Coordination Principle and New Techniques in Heat Transfer Enhancement[M]. Beijing: China Electric Power Press, 2004: 21. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 273
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 703
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||