化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2727-2736.DOI: 10.11949/0438-1157.20190155
张黎1(),王新宇2,李征1,谷俊峰1,3,阮诗伦1,3(),申长雨1,3
收稿日期:
2019-02-26
修回日期:
2019-04-29
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
阮诗伦
作者简介:
张黎(1995—),女,硕士研究生,<email>zl19950124@163.com</email>
基金资助:
Li ZHANG1(),Xinyu WANG2,Zheng LI1,Junfeng GU1,3,Shilun RUAN1,3(),Changyu SHEN1,3
Received:
2019-02-26
Revised:
2019-04-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Shilun RUAN
摘要:
主要介绍了一种用于预测熔融沉积模型(FDM)层间粘接强度的扩散修复模型。根据流变数据确定温度相关扩散模型,基于一维瞬态热分析预测FDM部件层间的扩散。将温度历史上的扩散系数对时间积分得到界面分子总扩散,进而得到层间粘接强度预测模型。结果表明:不同打印条件下预测结果与测得的粘合强度结果的吻合度较好,且该模型经修正后也适用于FDM部件弹性模量的预测。通过三点弯曲实验与数值模拟的结果对比,验证了粘接强度及模量预测模型的可用性。因此,可以作为FDM打印件承载性能预测的有效模型。
中图分类号:
张黎, 王新宇, 李征, 谷俊峰, 阮诗伦, 申长雨. 熔融沉积3D打印材料粘接强度及模量预测研究[J]. 化工学报, 2019, 70(7): 2727-2736.
Li ZHANG, Xinyu WANG, Zheng LI, Junfeng GU, Shilun RUAN, Changyu SHEN. Prediction study on bond strength and modulus of fused deposition modeling product[J]. CIESC Journal, 2019, 70(7): 2727-2736.
打印条件编号 | 打印速率/(mm/s) | 喷嘴温度/℃ | 平台温度/℃ | 层高/mm | 纤维宽度/mm | 单层打印时间/s |
---|---|---|---|---|---|---|
1 | 40 | 250 | 100 | 0.2 | 0.4 | 6 |
2 | 60 | 250 | 100 | 0.2 | 0.4 | 4 |
3 | 20 | 250 | 100 | 0.2 | 0.4 | 12 |
4 | 40 | 230 | 100 | 0.2 | 0.4 | 6 |
5 | 40 | 250 | 80 | 0.2 | 0.4 | 6 |
6 | 40 | 250 | 100 | 0.1 | 0.4 | 6 |
7 | 40 | 250 | 100 | 0.3 | 0.4 | 6 |
表1 打印条件参数
Table 1 Parameters of different printing conditions
打印条件编号 | 打印速率/(mm/s) | 喷嘴温度/℃ | 平台温度/℃ | 层高/mm | 纤维宽度/mm | 单层打印时间/s |
---|---|---|---|---|---|---|
1 | 40 | 250 | 100 | 0.2 | 0.4 | 6 |
2 | 60 | 250 | 100 | 0.2 | 0.4 | 4 |
3 | 20 | 250 | 100 | 0.2 | 0.4 | 12 |
4 | 40 | 230 | 100 | 0.2 | 0.4 | 6 |
5 | 40 | 250 | 80 | 0.2 | 0.4 | 6 |
6 | 40 | 250 | 100 | 0.1 | 0.4 | 6 |
7 | 40 | 250 | 100 | 0.3 | 0.4 | 6 |
比热容/ (J/(kg?℃)) | 热导率/ (W/(m?K)) | 密度/(kg/m3) | 对流传热系数/ (W/(m2?℃)) |
---|---|---|---|
2340 | 0.234 | 1040 | 10 |
表2 材料属性参数
Table 2 Material property parameters
比热容/ (J/(kg?℃)) | 热导率/ (W/(m?K)) | 密度/(kg/m3) | 对流传热系数/ (W/(m2?℃)) |
---|---|---|---|
2340 | 0.234 | 1040 | 10 |
打印条件 编号 | 纤维宽度/mm | 粘接宽度/mm | 纤维宽度/mm | fwetting |
---|---|---|---|---|
1 | 0.40 | 0.33 | 0.43 | 0.78 |
2 | 0.40 | 0.34 | 0.44 | 0.77 |
3 | 0.40 | 0.34 | 0.44 | 0.78 |
4 | 0.40 | 0.33 | 0.44 | 0.76 |
5 | 0.40 | 0.32 | 0.43 | 0.75 |
6 | 0.40 | 0.39 | 0.43 | 0.90 |
7 | 0.40 | 0.27 | 0.44 | 0.61 |
表3 不同打印条件下的纤维宽度及粘接宽度
Table 3 Fiber widths and bond widths under different printing conditions
打印条件 编号 | 纤维宽度/mm | 粘接宽度/mm | 纤维宽度/mm | fwetting |
---|---|---|---|---|
1 | 0.40 | 0.33 | 0.43 | 0.78 |
2 | 0.40 | 0.34 | 0.44 | 0.77 |
3 | 0.40 | 0.34 | 0.44 | 0.78 |
4 | 0.40 | 0.33 | 0.44 | 0.76 |
5 | 0.40 | 0.32 | 0.43 | 0.75 |
6 | 0.40 | 0.39 | 0.43 | 0.90 |
7 | 0.40 | 0.27 | 0.44 | 0.61 |
打印条件编号 | 环境温度/℃ | 基底温度/℃ |
---|---|---|
1 | 50.07 | 77.67 |
2 | 51.74 | 92.65 |
3 | 49.84 | 58.1 |
4 | 51.77 | 75.01 |
5 | 45.18 | 73.42 |
6 | 52.3 | 69.53 |
7 | 51.74 | 79.7 |
表4 环境温度及基底温度
Table 4 Environment and substrate temperature
打印条件编号 | 环境温度/℃ | 基底温度/℃ |
---|---|---|
1 | 50.07 | 77.67 |
2 | 51.74 | 92.65 |
3 | 49.84 | 58.1 |
4 | 51.77 | 75.01 |
5 | 45.18 | 73.42 |
6 | 52.3 | 69.53 |
7 | 51.74 | 79.7 |
部件 | 弹性模量E/MPa | Poisson比ν | 密度ρ/(kg/m3) |
---|---|---|---|
part-1 | 2300.00 | 0.38 | 1150 |
part-2 | 819.83 | 0.38 | 1150 |
压头/支座 | 2.10×105 | 0.3 | 7900 |
表5 结构分析中的材料属性
Table 5 Material properties for mechanical XFEM analysis
部件 | 弹性模量E/MPa | Poisson比ν | 密度ρ/(kg/m3) |
---|---|---|---|
part-1 | 2300.00 | 0.38 | 1150 |
part-2 | 819.83 | 0.38 | 1150 |
压头/支座 | 2.10×105 | 0.3 | 7900 |
1 | 韩江, 王益康, 田晓青, 等. 熔融沉积(FDM) 3D打印工艺参数优化设计研究[J]. 制造技术与机床, 2016, (6): 139-142. |
HanJ, WangY K, TianX Q, et al. Optimum design of 3D printing process parameters for fused deposition modeling(FDM) [J]. Manufacturing Technology and Machine Tools, 2016, (6): 139-142. | |
2 | 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128. |
ZhangX J, TangS Y, ZhaoH Y, et al. Research status and key technologies of 3D printing technology[J]. Material Engineering, 2016, 44(2): 122-128. | |
3 | SinghS, RamakrishnaS, SinghR. Material issues in additive manufacturing: a review[J]. Journal of Manufacturing Processes, 2017, 25: 185-200. |
4 | LongJ, GholizadehH, LuJ, et al. Application of fused deposition modeling (FDM) method of 3D printing in drug delivery[J]. Current Pharmaceutical Design, 2017, 23(3): 433-439. |
5 | GaoW, ZhangY, RamanujanD, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65-89. |
6 | VishwasM, BasavarajC. Studies on optimizing process parameters of fused deposition modeling technology for ABS[J]. Materials Today: Proceedings, 2017, 4(10): 10994-11003. |
7 | TanD, ManiruzzamanM, NokhodchiA. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modeling (FDM) 3D printing for personalised drug delivery[J]. Pharmaceutics, 2018, 10(4): 203. |
8 | 夏春蕾, 张均, 姜志国. 熔融沉积成型3D打印技术应用进展及展望[J]. 工程塑料应用, 2017, 45(3): 130-133. |
XiaC L, ZhangJ, JiangZ G. Progress and prospect of 3D printing technology for fused deposition modeling[J]. Engineering Plastics Applications, 2017, 45 (3): 130-133. | |
9 | 唐通鸣, 张政, 邓佳文, 等. 基于 FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43(6): 228-230. |
TangT M, ZhangZ, DengJ W, et al. Research status and development trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43 (6): 228-230. | |
10 | CasavolaC, CazzatoA, MoramarcoV, et al. Residual stress measurement in fused deposition modeling parts[J]. Polymer Testing, 2017, 58: 249-255. |
11 | ChaoI, YoungJ, Coles BlackJ, et al. The application of three-dimensional printing technology in anaesthesia: a systematic review[J]. Anaesthesia, 2017, 72(5): 641-650. |
12 | SalentijnG I, OomenP E, GrajewskiM, et al. Fused deposition modeling 3D printing for (bio) analytical device fabrication: procedures, materials, and applications[J]. Analytical Chemistry, 2017, 89(13): 7053-7061. |
13 | SolankiN G, TahsinM, ShahA V, et al. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and print ability[J]. Journal of Pharmaceutical Sciences, 2018, 107(1): 390-401. |
14 | SunQ, RizviG, BellehumeurC, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2): 72-80. |
15 | GriffithsC, HowarthJ, G D-ARowbotham, et al. Effect of build parameters on processing efficiency and material performance in fused deposition modeling[J]. Procedia CIRP, 2016, 49: 28-32. |
16 | BellehumeurC, LiL, SunQ, et al. Modeling of bond formation between polymer filaments in the fused deposition modeling process[J]. Journal of Manufacturing Processes, 2004, 6(2): 170-178. |
17 | NingF, CongW, HuZ, et al. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: a comparison of two reinforcements[J]. Journal of Composite Materials, 2017, 51(27): 3733-3742. |
18 | 李初然. 浅析现代3D打印技术[J]. 科技创新导报, 2017, (28): 91-92. |
LiC R. A brief analysis of modern 3D printing technology[J]. Science and Technology Innovation Report, 2017, (28): 91-92. | |
19 | 赵天婵, 黄海. 基于3D打印的熔融沉积快速成型工艺若干问题研究[J]. 机械工程师, 2016, (4): 22-23. |
ZhaoT C, HuangH. Research on problems of fused deposition rapid prototyping technology based on 3D printing [J]. Mechanical Engineer, 2016, (4): 22-23. | |
20 | YinJ, LuC, FuJ, et al. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion[J]. Materials & Design, 2018, 150: 104-112. |
21 | WolszczakP, LygasK, PaszkoM, et al. Heat distribution in material during fused deposition modeling[J]. Rapid Prototyping Journal, 2018, 24(3): 615-622. |
22 | TurnerN B, StrongR, GoldA S. A review of melt extrusion additive manufacturing process (Ⅰ): Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. |
23 | GurralaP K, RegallaS P. Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part[J]. Virtual and Physical Prototyping, 2014, 9(3): 141-149. |
24 | CooganT J, KazmerD O. Healing simulation for bond strength prediction of FDM[J]. Rapid Prototyping Journal, 2017, 23(3): 551-561. |
25 | LodgeT P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers[J]. Physical Review Letters, 1999, 83(16): 3218. |
26 | HillN, HaghiM. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate[J]. Rapid Prototyping Journal, 2014, 20(3): 221-227. |
27 | BelliniA, Eri SG. Mechanical characterization of parts fabricated using fused deposition modeling[J]. Rapid Prototyping Journal, 2003, 9(4): 252-264. |
28 | WoolR, Connor KO. Time dependence of crack healing[J]. Journal of Polymer Science: Polymer Letters Edition, 1982, 20(1): 7-16. |
29 | WoolR, YuanB L, McgarelO. Welding of polymer interfaces[J]. Polymer Engineering & Science, 1989, 29(19): 1340-1367. |
30 | WilliamsM L, LandelR F, FerryJ D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[15] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||