1 |
Sheldon R A , Van Pelt S . Enzyme immobilisation in biocatalysis: why, what and how [J]. Chem. Soc. Rev., 2013, 42(15): 6223-6235.
|
2 |
Hudson S , Cooney J , Magner E . Proteins in mesoporous silicates [J]. Angew. Chem. Intern. Ed., 2008, 47(45): 8582-8594.
|
3 |
王梦凡, 齐崴, 苏荣欣, 等 . 交联酶聚体技术研究进展 [J]. 化学进展, 2010, 22(1): 173-178.
|
|
Wang M F , Qi W , Su R X , et al . Advances in cross-linked enzyme aggregates [J]. Prog. Chem., 2010, 22(1): 173-178.
|
4 |
Vasic-Racki D, History of industrial biotransformations—dreams and realities[M] //Liese A , Seelbach K , Wandrey C . Industrial Biotransformations. Weinhiem: Wiley-VCH Verlag GmbH & Co. KGaA, 2006:1-36.
|
5 |
Hartmann M , Kostrov X . Immobilization of enzymes on porous silicas—benefits and challenges [J]. Chem. Soc. Rev., 2013, 42(15): 6277-6289.
|
6 |
Sorensen M H , Ng J B S , Bergstrom L , et al . Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier [J]. J.Colloid Interf. Sci., 2010, 343(1): 359-365.
|
7 |
戈钧, 卢滇楠, 朱晶莹, 等 . 纳米酶催化剂制备方法研究进展 [J]. 化工学报, 2014, 65(7): 2668-2675.
|
|
Ge J , Lu D N , Zhu J Y , et al . Advances in preparation of nanostructured enzyme catalysts [J]. CIESC Journal, 2014, 65(7): 2668-2675.
|
8 |
Verma P K , Giri A , Thanh N T K , et al . Superparamagnetic fluorescent nickel-enzyme nanobioconjugates: synthesis and characterization of a novel multifunctional biological probe [J]. J. Mater. Chem., 2010, 20(18): 3722-3728.
|
9 |
Duncan R . The dawning era of polymer therapeutics [J]. Nat. Rev. Drug Discov., 2003, 2(5): 347-360.
|
10 |
Velonia K , Rowan A E , Nolte R J M . Lipase polystyrene giant amphiphiles [J]. J.Am.Chem.Soc., 2002, 124(16): 4224-4225.
|
11 |
Zhu G Y , Wang P . Polymer-enzyme conjugates can self-assemble at oil/water interfaces and effect interfacial biotransformations [J]. J.Am.Chem.Soc., 2004, 126(36): 11132-11133.
|
12 |
Lele B S , Murata H , Matyjaszewski K , et al . Synthesis of uniform protein-polymer conjugates [J]. Biomacromolecules, 2005, 6(6): 3380-3387.
|
13 |
Murata H , Cummings C S , Koepsel R R , et al . Polymer-based protein engineering can rationally tune enzyme activity, pH-dependence, and stability [J]. Biomacromolecules, 2013, 14(6): 1919-1926.
|
14 |
Yang W K , Zhu L J , Cui Y C , et al . Improvement of site-directed protein-polymer conjugates: high bioactivity and stability using a soft chain-transfer agent [J]. ACS Appl. Mater. Inter., 2016, 8(25): 15967-15974.
|
15 |
Shimoboji T , Larenas E , Fowler T , et al . Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates [J]. Bioconjug. Chem., 2003, 14(3): 517-525.
|
16 |
Reetz M T . Lipases as practical biocatalysts [J]. Curr. Opin. Chem. Biol., 2002, 6(2): 145-150.
|
17 |
Reis P , Holmberg K , Watzke H , et al . Lipases at interfaces: a review [J]. Adv. Colloid Interf. Sci., 2009, 147/148: 237-250.
|
18 |
De Maria P D , Sanchez-Montero J M , Sinisterra J V , et al . Understanding Candida rugosa lipases: an overview [J]. Biotechnol. Adv., 2006, 24(2): 180-196.
|
19 |
Reetz M T , Zonta A , Simpelkamp J . Efficient heterogeneous biocatalysts by entrapment of lipase in hydrophobic sol-gel materials [J]. Angew. Chem. Intern. Ed., 1995, 34(3): 301-303.
|
20 |
Geng J , Biedermann F , Zzyed J M , et al . Supramolecular glycopolymers in water: a reversible route toward multivalent carbohydrate-lectin conjugates using cucurbit[8]uril [J]. Macromolecules, 2011, 44(11): 4276-4281.
|
21 |
Cummings C , Murata H , Koepsel R , et al . Tailoring enzyme activity and stability using polymer-based protein engineering [J]. Biomaterials, 2013, 34(30): 7437-7443.
|
22 |
Averick S , Simakova A , Park S , et al . ATRP under biologically relevant conditions: grafting from a protein [J]. ACS Macro. Lett., 2012, 1(1): 6-10.
|
23 |
Bohlen P , Stein S , Dairman W , et al . Fluorometric assay of proteins in the nanogram range [J]. Arch. Biochem. Biophys., 1973, 155(1): 213-220.
|
24 |
Micsonai A , Wien F , Bulyaki E , et al . BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra [J]. Nucleic. Acids Res., 2018,46(W1): W315-W322.
|
25 |
Gupta N , Rathi P , Gupta R . Simplified para-nitrophenyl palmitate assay for lipases and esterases [J]. Anal. Biochem., 2002, 311(1): 98-99.
|
26 |
Wang W , Zhou W , Li J , et al . Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres [J]. Bioproc. Biosyst. Eng., 2015, 38(11): 2107-2115.
|
27 |
Yong Y , Bai Y X , Li Y F , et al . Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity [J]. Proc. Biochem., 2008, 43(11): 1179-1185.
|
28 |
Du M , Lu D , Liu Z . Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis: molecular simulation and experimental validation [J]. J.Mol.Catal.B-Enzym., 2013, 88: 60-68.
|
29 |
Hu Y , Yang J , Jia R , et al . Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase [J]. Bioproc. Biosyst. Eng., 2014, 37(8): 1617-1626.
|
30 |
Guo Y , Zhu X , Fang F , et al . Immobilization of enzymes on a phospholipid bionically modified polysulfone gradient-pore membrane for the enhanced performance of enzymatic membrane bioreactors [J]. Molecules, 2018, 23(1): 144.
|
31 |
Zhang R , Zhao L , Liu R . Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods [J]. J.Photoch.Photobio.B, 2016, 163: 40-46.
|
32 |
Svendsen A . Lipase protein engineering [J]. BBA-Protein Struct. Mol. Enzymol., 2000, 1543(2): 223-238.
|
33 |
Grochulski P , Li Y , Schrag J D , et al . Insights into interfacial activation from an open structure of Candida rugosa lipase [J]. J.Biol.Chem., 1993, 268(17): 12843-12847.
|
34 |
Li X , Zhang C , Li S , et al . Improving catalytic performance of Candida rugosa lipase by chemical modification with polyethylene glycol functional ionic liquids [J]. Ind. Eng. Chem. Res., 2015, 54(33): 8072-8079.
|
35 |
Du M L , Lu D N , Liu Z . Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis: molecular simulation and experimental validation [J]. J.Mol.Catal.B-Enzym., 2013, 88: 60-68.
|
36 |
Keefe A J , Jiang S . Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity [J]. Nature Chemistry, 2012, 4(1): 60-64.
|
37 |
Verger R . Interfacial enzyme kinetics of lipolysis [J]. Annual Review of Biophysics and Bioengineering, 1976, 5: 77-117.
|
38 |
Gao B , Xu T , Lin J , et al . Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation [J]. J.Mol.Catal.B-Enzym., 2011, 68(3/4): 286-291.
|
39 |
张晓凤, 喻晓蔚, 徐岩 . 定点突变提高土曲霉Aspergillus terreus脂肪酶的催化活性 [J]. 生物工程学报, 2018, 34(7): 1091-1105.
|
|
Zhang X F , Yu X W , Xu Y . Improvement of catalytic activity of Aspergillus terreus lipase by site-directed mutagenesis [J]. Chin.J.Biotechnol.,2018, 34(7): 1091-1105.
|
40 |
Zhang C Y , Dong X Y , Guo Z , et al . Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles [J]. J. Colloid Interf. Sci., 2018, 519: 145-153.
|
41 |
Pegram L M , Record M T . Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface [J]. J.Phys.Chem.B, 2007, 111(19): 5411-5417.
|
42 |
曲伟光, 魏荣卿, 何冰芳, 等 . 亲水梳状环氧聚合物载体柔性固定化脂肪酶 [J]. 催化学报, 2011, 32(12): 1869-1874.
|
|
Qu W G , Wei R Q , He B F , et al . Flexible immobilization of lipase on hydrophobilic and comblike polymer support containing epoxy group [J]. Chin. J.Catal., 2011, 32(12): 1869-1874.
|
43 |
Lei L , Liu X , Li Y , et al . Study on synthesis of poly(GMA)-grafted Fe3O4/SiO x magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization [J]. Mater. Chem. Phys., 2011, 125(3): 866-871.
|