化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 258-264.DOI: 10.11949/0438-1157.20190563
收稿日期:
2019-05-24
修回日期:
2019-06-04
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
何茂刚
作者简介:
王韬(1995—),女,博士研究生,基金资助:
Tao WANG(),Xiangyang LIU,Maogang HE(
)
Received:
2019-05-24
Revised:
2019-06-04
Online:
2019-09-06
Published:
2019-09-06
Contact:
Maogang HE
摘要:
建立了离子液体1-正丁基3-甲基咪唑双(三氟甲基磺酰基)酰亚胺([bmim][Tf2N])的全原子模型,并分别在五种不同的温度和五种不同的压力下对其进行了分子动力学模拟。将[bmim][Tf2N]密度的模拟结果与实验结果进行了比较,两者吻合良好,验证了模型准确性。此外,还对[bmim][Tf2N]内部的相互作用能随温度和压力的变化规律进行了分析,结果表明:离子液体内部的库仑能、范德华能、长程作用能均随温度的升高而增加,系统达到平衡所需时间随之变短;相对温度而言,压力对离子液体内部相互作用能的影响较小;在各种相互作用能中,范德华能随温度和压力的变化最大;温度和压力对离子液体的构型不会产生影响。
中图分类号:
王韬, 刘向阳, 何茂刚. 离子液体[bmim][Tf2N]的分子动力学模拟[J]. 化工学报, 2019, 70(S2): 258-264.
Tao WANG, Xiangyang LIU, Maogang HE. Molecular dynamics simulation of ionic liquid [bmim][Tf2N][J]. CIESC Journal, 2019, 70(S2): 258-264.
1 | ZhaoW, EslamiH, CavalcantiW L, et al. A refined all-atom model for the ionic liquid 1-n-butyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide [bmim][Tf2N][J]. Zeitschrift für Physikalische Chemie, 2007, 221(11/12): 1647-1662. |
2 | HaoZ, JinW, ZhangJ A, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277. |
3 | ZhouY, AntoniettiM. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique[J]. Advanced Materials, 2010, 15(17): 1452-1455. |
4 | CamperD, BaraJ E, GinD L, et al. Room-temperature ionic liquid-amine solutions : tunable solvents for efficient and reversible capture of CO2[J]. Industrial & Engineering Chemistry Research, 2008, 47(47): 8496-8498. |
5 | HallettJ P, WeltonT. Room-temperature ionic liquids: solvents for synthesis and catalysis(2)[J]. Cheminform, 2011, 111(5): 2071-2084. |
6 | YokozekiA, ShiflettM B. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid [hmim][Tf2N][J]. Energy & Fuels, 2010, 23(24): 1001-1008. |
7 | ShiflettM B, YokozekiA. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6][J]. Fluid Phase Equilibria, 2010, 294(1): 105-113. |
8 | HrubiskováK, SimkovicováM, NovotnýJ. Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures[J]. Journal of Raman Spectroscopy, 2010, 39(2): 233-237. |
9 | KuwabataS, TsudaT, TorimotoT. Room-temperature ionic liquid. A new medium for material production and analyses under vacuum conditions[J]. J. Phys. Chem. Lett., 2010, 1(21): 3177-3188. |
10 | ShiflettM B, NiehausA M S, YokozekiA. Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4][J]. Journal of Physical Chemistry B, 2011, 115(13): 3478-3487. |
11 | SunY K, SunG Y, JiaM, et al. Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves[J]. Analytical and Bioanalytical Chemistry, 2019 , 411( 6): 1261-1271. |
12 | KarM, TutusausO, MacfarlaneD R, et al. Novel and versatile room temperature ionic liquids for energy storage[J]. Energy & Environmental Science, 2019, 12(2): 566-571. |
13 | LiX, SchatzG C, NesbittD J. Anion effects in the scattering of CO2 from the room-temperature ionic liquids [bmim][BF4] and [bmim][Tf2N]: insights from quantum mechanics/molecular mechanics trajectories[J]. Journal of Physical Chemistry B, 2015, 116(11): 3587-3602. |
14 | GurkanB, SimeonF, HattonT A. Quinone reduction in ionic liquids for electrochemical CO2 separation[J]. ACS Sustainable Chem. Eng., 2015, 3(7): 1394-1405. |
15 | PanjaS, RuhelaR, TripathiS C, et al. Effect of room temperature ionic liquid on the extraction behavior of plutonium (Ⅳ) using a novel reagent, bis-(2-ethylhexyl) carbamoyl methoxy phenoxy-bis-(2-ethylhexyl) acetamide [Benzodioxodiamide, BenzoDODA][J]. Separation & Purification Technology, 2015, 151: 139-146. |
16 | BoothR S, AnnesleyC J, YoungJ W, et al. Identification of multiple conformers of the ionic liquid [emim][tf2n] in the gas phase using IR/UV action spectroscopy [J]. Physical Chemistry Chemical Physics, 2016, 18(25): 17037-17043. |
17 | BaelhadjA C, MuteletF, JiangB, et al. Activity coefficients at infinite dilution for organic solutes dissolved in two 1, 2, 3-tris(diethylamino)cyclopenylium based room temperature ionic liquids[J]. Journal of Molecular Liquids, 2016, 223: 89-99. |
18 | KanakuboM, HarrisK R. Density of 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide and 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide over an extended pressure range up to 250 MPa[J]. Journal of Chemical & Engineering Data, 2015, 60(5): 1408-1418. |
19 | TariqM, CarvalhoP J, CoutinhoJ A P, et al. Viscosity of (C2-C14) 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids in an extended temperature range[J]. Fluid Phase Equilibria, 2011, 301(1): 22-32. |
20 | AndR C, VegaL F. Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature[J]. Journal of Physical Chemistry B, 2006, 110(29): 14426-14435. |
21 | ShaM, ZhangF, WuG, et al. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation[J]. Journal of Chemical Physics, 2008, 128(13): 792. |
22 | ShaoQ. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: a molecular dynamics simulation study [J]. Journal of Chemical Physics, 2013, 139(11): 09B641_1. |
23 | WuM, WeiL, SongL, et al. Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation[J]. RSC Advances, 2017, 7(46): 28945-28950. |
24 | RajuS G, HariharanK S, ParkD H, et al. Effects of variation in chain length on ternary polymer electrolyte-ionic liquid mixture—a molecular dynamics simulation study[J]. Journal of Power Sources, 2015, 293(10): 983-992. |
25 | SafinejadR, MehdipourN, EslamiH. Atomistic reverse nonequilibrium molecular dynamics simulation of the viscosity of ionic liquid 1-n-butyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide [bmim][Tf2N][J]. Physical Chemistry Chemical Physics, 2018, 20(33): 21544-21551. |
26 | FatimaU, AnwarN, Montes-CamposH, et al. Molecular dynamic simulation, molecular interactions and structural properties of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide+ 1-butanol/1-propanol mixtures at (298.15—323.15) K and 0.1 MPa[J]. Fluid Phase Equilibria, 2018, 472: 9-21. |
27 | NeumannJ, GolubB, OdebrechtL M, et al. Revisiting imidazolium based ionic liquids: effect of the conformation bias of the [ntf2] anion studied by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2018, 148(19): 193828. |
28 | Canongia LopesJ N, PáduaA A H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J]. The Journal of Physical Chemistry B, 2004, 108(43): 16893-16898. |
29 | TroncosoJ, CerdeiriñaC A, SanmamedY A, et al. Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][Tf2N][J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1856-1859. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[6] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[11] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[12] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[13] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||