化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1683-1695.DOI: 10.11949/0438-1157.20190802
李安玉1,2(),李双莉1,2,余碧戈1,2,马爱英1,2,周鑫兰1,2,谢建慧1,2,蒋艳红1,2,邓华1,2()
收稿日期:
2019-07-11
修回日期:
2019-10-14
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
邓华
作者简介:
李安玉(1994—),男,硕士研究生,基金资助:
Anyu LI1,2(),Shuangli LI1,2,Bige YU1,2,Aiying MA1,2,Xinlan ZHOU1,2,Jianhui XIE1,2,Yanhong JIANG1,2,Hua DENG1,2()
Received:
2019-07-11
Revised:
2019-10-14
Online:
2020-04-05
Published:
2020-04-05
Contact:
Hua DENG
摘要:
利用废弃的木薯杆制备了载镁的生物炭吸附剂。以氨氮、磷为目标污染物,采用控制变量法研究了不同镁盐改性、MgCl2浓度、碳化温度、固液比和碳化时间对氨氮、磷吸附性能的影响,制备最具吸附性能的载镁木薯秆基生物炭(Mg-BC),进行批量吸附氨氮和磷实验。利用等温模型(Langmuir和Freundlich模型)和动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)探究其吸附特性,在其吸附特性研究的基础上,运用FTIR、XRD、SEM-EDS、XPS等表征手段对其吸附机理进行探讨。结果表明,Mg-BC对氨氮和磷的吸附过程均符合Freundlich模型和准二级动力学模型,为多分子层的化学吸附,理论饱和吸附量分别为43.48 mg·g-1和96.00 mg·g-1。结合表征结果推测,Mg-BC吸附氨氮、磷主要通过官能团作用、络合沉淀和离子交换等多过程协同完成。
中图分类号:
李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695.
Anyu LI, Shuangli LI, Bige YU, Aiying MA, Xinlan ZHOU, Jianhui XIE, Yanhong JIANG, Hua DENG. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: preparation optimization and adsorption mechanism[J]. CIESC Journal, 2020, 71(4): 1683-1695.
Mg-BC | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|
KL/ (L·mg-1) | Qm/ (mg·g-1) | R2 | KF/(g·(mg·min)-1) | 1/n | R2 | |
氨氮 | 0.0409 | 43.48 | 0.9529 | 2.6642 | 0.5680 | 0.9823 |
磷 | 0.1111 | 96.00 | 0.9369 | 9.0142 | 0.8877 | 0.9521 |
表1 Mg-BC吸附氨氮、磷的等温模型拟合参数
Table 1 Isothermal model fitting parameters of Mg-BC adsorption of ammonia nitrogen and phosphorus
Mg-BC | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|
KL/ (L·mg-1) | Qm/ (mg·g-1) | R2 | KF/(g·(mg·min)-1) | 1/n | R2 | |
氨氮 | 0.0409 | 43.48 | 0.9529 | 2.6642 | 0.5680 | 0.9823 |
磷 | 0.1111 | 96.00 | 0.9369 | 9.0142 | 0.8877 | 0.9521 |
Mg-BC | Quasi-first-order kinetic | Quasi-second-order kinetic | Intraparticle diffusion | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | K1/min-1 | R2 | K2/(g·(mg·min)-1) | Qe/(mg·g-1) | R2 | C/(mg·g-1) | K3/(mg·g-1·min-0.5) | R2 | |
氨氮 | 53.89 | 0.2806 | 0.9572 | 0.0022 | 44.84 | 0.9979 | 13.22 | 2.14 | 0.8111 |
磷 | 19.71 | 0.0229 | 0.7174 | 0.0009 | 68.97 | 0.9887 | 13.02 | 3.88 | 0.7537 |
表2 Mg-BC吸附氨氮、磷的等温动力学拟合参数
Table 2 Isothermal kinetic parameters of adsorption of ammonia nitrogen and phosphorus by Mg-BC
Mg-BC | Quasi-first-order kinetic | Quasi-second-order kinetic | Intraparticle diffusion | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | K1/min-1 | R2 | K2/(g·(mg·min)-1) | Qe/(mg·g-1) | R2 | C/(mg·g-1) | K3/(mg·g-1·min-0.5) | R2 | |
氨氮 | 53.89 | 0.2806 | 0.9572 | 0.0022 | 44.84 | 0.9979 | 13.22 | 2.14 | 0.8111 |
磷 | 19.71 | 0.0229 | 0.7174 | 0.0009 | 68.97 | 0.9887 | 13.02 | 3.88 | 0.7537 |
Biochar | BET/(m2·g-1) | Total pore volume/(cm3·g-1) | Average aperture/nm | Biochar magnesium content /(g·kg-1) |
---|---|---|---|---|
Mg-BC | 10.33 | 0.0406 | 15.71 | 113.21 |
BC | 4.10 | 0.0196 | 9.60 | — |
Biochar | C/% | H/% | N/% | O/% |
Mg-BC | 47.13 | 7.81 | 0.66 | 22.41 |
BC | 57.55 | 8.29 | 0.24 | 28.24 |
Biochar | O/C | H/C | (O+N)/C | (O+H)/C |
Mg-BC | 0.48 | 0.17 | 0.49 | 0.64 |
BC | 0.49 | 0.14 | 0.50 | 0.63 |
表3 Mg-BC的物理性质参数
Table 3 Physical property parameters of Mg-BC
Biochar | BET/(m2·g-1) | Total pore volume/(cm3·g-1) | Average aperture/nm | Biochar magnesium content /(g·kg-1) |
---|---|---|---|---|
Mg-BC | 10.33 | 0.0406 | 15.71 | 113.21 |
BC | 4.10 | 0.0196 | 9.60 | — |
Biochar | C/% | H/% | N/% | O/% |
Mg-BC | 47.13 | 7.81 | 0.66 | 22.41 |
BC | 57.55 | 8.29 | 0.24 | 28.24 |
Biochar | O/C | H/C | (O+N)/C | (O+H)/C |
Mg-BC | 0.48 | 0.17 | 0.49 | 0.64 |
BC | 0.49 | 0.14 | 0.50 | 0.63 |
Sample | Atomic/% | ||||
---|---|---|---|---|---|
P 2p | C 1s | N 1s | O 1s | Mg 1s | |
Mg-BC | 0.35 | 73.05 | 1.68 | 20.72 | 4.21 |
Mg-BC+N/P | 1.05 | 78.82 | 2.28 | 16.48 | 1.37 |
表4 Mg-BC吸附氨氮、磷前后的XPS全谱图原子占比
Table 4 Atomic ratio of XPS full spectrum before and after Mg-BC adsorption of ammonia nitrogen and phosphorus
Sample | Atomic/% | ||||
---|---|---|---|---|---|
P 2p | C 1s | N 1s | O 1s | Mg 1s | |
Mg-BC | 0.35 | 73.05 | 1.68 | 20.72 | 4.21 |
Mg-BC+N/P | 1.05 | 78.82 | 2.28 | 16.48 | 1.37 |
峰 | 样品 | BE/eV | 基团 | Atomic/% |
---|---|---|---|---|
P 2p | Mg-BC+N/P | 135.28 | P—O/P—OH/PO | 100 |
N 1s | Mg-BC+N/P | 398.39 | C—N | 20.36 |
399.58 | C—H2 | 62.74 | ||
400.48 | C—O—NH2 | 16.90 | ||
C 1s | Mg-BC | 284.98 | C—C | 61.21 |
285.98 | C—O—H/C—O—C | 31.59 | ||
287.28 | CO | 7.20 | ||
Mg-BC+N/P | 285.08 | C—C | 84.87 | |
286.08 | CO | 15.13 | ||
O 1s | Mg-BC | 531.68 | Mg—O—Mg | 62.13 |
533.08 | Mg—O—P | 37.87 | ||
Mg-BC+N/P | 531.68 | Mg—O—Mg | 65.89 | |
532.98 | Mg—O—P/PO | 29.79 | ||
533.58 | P—OH | 4.38 |
表5 Mg-BC吸附氨氮、磷前后解卷积P 2p、N 1s、C 1s和O 1s的峰拟合参数
Table 5 Peak fitting parameters of deconvoluted P 2p, N 1s, C 1s and O 1s before and after Mg-BC adsorption of ammonia nitrogen and phosphorus
峰 | 样品 | BE/eV | 基团 | Atomic/% |
---|---|---|---|---|
P 2p | Mg-BC+N/P | 135.28 | P—O/P—OH/PO | 100 |
N 1s | Mg-BC+N/P | 398.39 | C—N | 20.36 |
399.58 | C—H2 | 62.74 | ||
400.48 | C—O—NH2 | 16.90 | ||
C 1s | Mg-BC | 284.98 | C—C | 61.21 |
285.98 | C—O—H/C—O—C | 31.59 | ||
287.28 | CO | 7.20 | ||
Mg-BC+N/P | 285.08 | C—C | 84.87 | |
286.08 | CO | 15.13 | ||
O 1s | Mg-BC | 531.68 | Mg—O—Mg | 62.13 |
533.08 | Mg—O—P | 37.87 | ||
Mg-BC+N/P | 531.68 | Mg—O—Mg | 65.89 | |
532.98 | Mg—O—P/PO | 29.79 | ||
533.58 | P—OH | 4.38 |
1 | 袁鹏, 宋永会, 袁芳, 等. 磷酸铵镁结晶法去除和回收养猪废水中营养元素的实验研究[J]. 环境科学学报, 2007, 27(7): 1127-1134. |
Yuan P, Song Y H, Yuan F, et al. Nutrient removal and recovery from swine wastewater by crystallization of magnesium ammonium phosphate[J]. Acta Scientiae Circumstantiae, 2007, 27(7): 1127-1134. | |
2 | Glazko I L, Levanova S V, Pechatnikov M G, et al. Deamination as a method of pretreatment of nitrogen-containing wastewater before biological treatment[J]. Russian Journal of Applied Chemistry, 2001, 74(9): 1513-1516. |
3 | Espinosa-Ortiz E J, Rene E R, Pakshirajan K, et al. Fungal pelleted reactors in wastewater treatment: applications and perspectives[J]. Chemical Engineering Journal, 2016, 283: 553-571. |
4 | Jafari K, Heidari M, Rahmanian O, et al. Wastewater treatment for amoxicillin removal using magnetic adsorbent synthesized by ultrasound process[J]. Ultrasonics Sonochemistry, 2018, 45: 248-256. |
5 | 吴彦瑜, 彭晓春, 陈志良, 等. MAP沉淀法去除渗滤液中低浓度氨氮[J]. 环境工程学报, 2013, 7(3): 925-930. |
Wu Y Y, Peng X C, Chen Z L, et al. Treatment of low concentration ammonium nitrogen in landfill leachate with MAP precipitation[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 925-930. | |
6 | 马忠虹, 崔文权, 李耀, 等. 光电催化去除柠檬酸铵中的氨氮[J]. 环境工程学报, 2017, 11(7): 4023-4028. |
Ma Z H, Cui W Q, Li Y, et al. Photoelectrocatalytic removal of ammonia nitrogen in ammonium citrate using titania dioxide nanotube electrode[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4023-4028. | |
7 | Yao Y, Gao B, Chen J, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential[J]. Bioresource Technology, 2013, 138(6): 8-13. |
8 | Haddad K, Jellali S, Jeguirim M, et al. Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust[J]. Journal of Environmental Management, 2018, 216: 305-314. |
9 | Cui G, Liu M, Chen Y, et al. Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater[J]. Carbohydrate Polymers, 2016, 154: 40-47. |
10 | Jiang Y H, Li A Y, Deng H, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research, 2019, 26(18): 18343-18353. |
11 | 魏永霞, 冯鼎锐, 刘志凯, 等. 生物炭对黑土区坡耕地水土保持及大豆增产效应研究[J]. 节水灌溉, 2017, (5): 37-41. |
Wei Y X, Feng D R, Liu Z K, et al. The effect of biochar on soil and water conservation and crop yield of the slope farmland in black soil region[J]. Water Saving Irrigation, 2017, (5): 37-41. | |
12 | 李仕友, 胡忠清, 陈琴, 等. 改性生物炭对废水中重金属的吸附[J]. 工业水处理, 2018, 38(7): 7-12. |
Li S Y, Hu Z Q, Chen Q, et al. Adsorption effect of modified biochar on the heavy metals in wastewater[J]. Industrial Water Treatment, 2018, 38(7): 7-12. | |
13 | 佟雪娇, 李九玉, 姜军, 等. 添加农作物秸秆炭对红壤吸附 Cu(Ⅱ)的影响[J]. 生态与农村环境学报, 2011, 27(5): 37-41. |
Tong X J, Li J Y, Jiang J, et al. effect of biochars derived from crop straws on Cu (Ⅱ) adsorption by red soils[J]. Journal of Ecology and Rural Environment, 2011, 27(5): 37-41. | |
14 | Zhu N, Yan T, Qiao J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. |
15 | Fang C, Zhang T, Li P, et al. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar[J]. Journal of Environmental Sciences, 2015, 29: 106-114. |
16 | Peng X, Wang M, Hu F, et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution[J]. Journal of Alloys and Compounds, 2019, 770: 1055-1063. |
17 | Jiang Y H, Li A Y, Deng H, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks[J]. Bioresource Technology, 2019, 276: 183-189. |
18 | Li J, Li B, Huang H, et al. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge[J]. Science of the Total Environment, 2019, 687: 460-469. |
19 | Zhang Z, Yan L, Yu H, et al. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: fast removal and mechanistic studies[J]. Bioresource Technology, 2019, 284: 65-71. |
20 | Luo Y, Li R, Sun X, et al. The roles of phosphorus species formed in activated biochar from rice husk in the treatment of landfill leachate[J]. Bioresource Technology, 2019, 288: 121533. |
21 | Liu X, Shen F, Qi X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw[J]. Science of the Total Environment, 2019, 666: 694-702. |
22 | Qiu G, Zhao Y, Wang H, et al. Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: mechanisms and potential applications for phosphate removal[J]. Environmental Science and Pollution Research, 2019, 26(7): 6565-6575. |
23 | Deng Y, Zhang T, Sharma BK, et al. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system[J]. Science of the Total Environment, 2019, 646: 1140-1154. |
24 | 唐登勇, 黄越, 胥瑞晨, 等. 改性芦苇生物炭对水中低浓度磷的吸附特征[J]. 环境科学, 2016, 37(6): 2195-2201. |
Tang D Y, Huang Y, Xu R C, et al. Adsorption behavior of low concentration phosphorus from water onto modified reed biochar[J]. Environmental Science, 2016, 37(6): 2195-2201. | |
25 | Wang S, Kong L J, Long J Y, et al. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies[J]. Chemosphere, 2018, 195: 666-672. |
26 | Chen X C, Chen G C, Chen L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. |
27 | 王彤彤, 王晓琳, 任志胜, 等. 不同原料制备的生物炭形貌结构及表面特性研究[J]. 环境科学与技术, 2017, 40(1): 42-48. |
Wang T T, Wang X L, Ren Z S, et al. Microscopic morphology and surface features of biochars derived from different raw materials[J]. Environmental Science and Technology, 2017, 40(1): 42-48. | |
28 | Gong Y P, Ni Z Y, Xiong Z Z, et al. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8326-8335. |
29 | 蒋艳红, 李安玉, 严发, 等. 载镁香蕉秆基生物炭对氮磷的吸附性能研究[J]. 农业资源与环境学报, 2018, 35(6): 559-567. |
Jiang Y H, Li A Y, Yan F, et al. Research on adsorption properties of Mg-loaded banana stalk biochar on nitrogen and phosphorus[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 559-567. | |
30 | Tarpeh W A, Udert K M, Nelson K L. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine[J]. Environmental Science & Technology, 2017, 51(4): 2373-2381. |
31 | Zhang Y, Guo X, Yao Y, et al. Mg-enriched engineered carbon from lithium-Ion battery anode for phosphate removal[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 2905-2909. |
32 | Xiao K, Yu Z, Wang H, et al. Investigation on emission control of NOx precursors and phosphorus reclamation during pyrolysis of ferric sludge[J]. Science of the Total Environment, 2019, 670: 932-940. |
33 | 程伟凤, 李慧, 杨艳琴, 等. 城市污泥厌氧发酵残渣热解制备生物炭及其氮磷吸附研究[J]. 化工学报, 2016, 67(4): 1541-1548. |
Cheng W F, Li H, Yang Y Q, et al. Preparation of biochar with fermented sludge residue by pyrolysis and adsorption of nitrogen and phosphorus[J]. CIESC Journal, 2016, 67(4): 1541-1548. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[10] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[11] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[12] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[13] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[14] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[15] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||