化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1676-1682.DOI: 10.11949/0438-1157.20190844
收稿日期:
2019-07-24
修回日期:
2019-09-29
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
张弢
作者简介:
李文秀(1963—),男,博士,教授,基金资助:
Wenxiu LI(),Yu ZHANG,Ying CAO,Zhonghan DING,Siyu ZHAO,Tao ZHANG()
Received:
2019-07-24
Revised:
2019-09-29
Online:
2020-04-05
Published:
2020-04-05
Contact:
Tao ZHANG
摘要:
以离子液体1-丁基-3-甲基咪唑二氰胺([BMIM] [DCA])为萃取剂,采用流程模拟和机理分析两种方法,对离子液体用于四氢呋喃(THF)-乙醇-水三元共沸物的分离进行了研究。通过COSMO-RS理论,以选择性为性能指标筛选出合适的离子液体[BMIM][DCA],并且以[BMIM][DCA]为萃取剂,在适合的操作条件下建立了萃取精馏过程,模拟结果表明THF、乙醇和水的质量分数都接近1。通过对[BMIM][DCA]和三种溶质的σ-谱图分析,发现[BMIM][DCA]可分别与三种溶质形成更强的氢键,从而打破三种溶质间的固有氢键,进而消除它们的共沸现象。
中图分类号:
李文秀, 张羽, 曹颖, 丁忠瀚, 赵思雨, 张弢. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682.
Wenxiu LI, Yu ZHANG, Ying CAO, Zhonghan DING, Siyu ZHAO, Tao ZHANG. Study on separation of tetrahydrofuran-ethanol-water ternary azeotrope system by ionic liquid[J]. CIESC Journal, 2020, 71(4): 1676-1682.
共沸物系 | 离子液体 | |||
---|---|---|---|---|
THF(1)+乙醇(2) | [BMIM][BF4](3) | 2.1049 | 1.7308 | 1.2161 |
[OMIM][BF4](3) | 0.8355 | 1.1638 | 0.7179 | |
[BMIM][DCA](3) | 1.8449 | 0.6547 | 2.8180 | |
THF(1)+水(2) | [BMIM][BF4](3) | 2.1049 | 1.6488 | 1.2766 |
[OMIM][BF4](3) | 0.8355 | 2.0985 | 0.3981 | |
[BMIM][DCA](3) | 1.8449 | 0.3722 | 4.9572 | |
乙醇(1)+水(2) | [BMIM][BF4](3) | 1.9539 | 1.6488 | 1.1850 |
[OMIM][BF4](3) | 1.1638 | 2.0985 | 0.5546 | |
[BMIM][DCA](3) | 0.6548 | 0.3722 | 1.7591 |
表1 离子液体用于三个二元共沸物系的筛选结果
Table 1 Screening results of ionic liquids for three binary azeotrope systems
共沸物系 | 离子液体 | |||
---|---|---|---|---|
THF(1)+乙醇(2) | [BMIM][BF4](3) | 2.1049 | 1.7308 | 1.2161 |
[OMIM][BF4](3) | 0.8355 | 1.1638 | 0.7179 | |
[BMIM][DCA](3) | 1.8449 | 0.6547 | 2.8180 | |
THF(1)+水(2) | [BMIM][BF4](3) | 2.1049 | 1.6488 | 1.2766 |
[OMIM][BF4](3) | 0.8355 | 2.0985 | 0.3981 | |
[BMIM][DCA](3) | 1.8449 | 0.3722 | 4.9572 | |
乙醇(1)+水(2) | [BMIM][BF4](3) | 1.9539 | 1.6488 | 1.1850 |
[OMIM][BF4](3) | 1.1638 | 2.0985 | 0.5546 | |
[BMIM][DCA](3) | 0.6548 | 0.3722 | 1.7591 |
IL | ω | ||||||
---|---|---|---|---|---|---|---|
[BMIM][DCA] | 205.3 | 24.4 | 712 | 0.2017 | 783 | 1035.8 | 0.8419 |
表2 [BMIM][DCA]的临界性质
Table 2 Critical properties of [BMIM][DCA]
IL | ω | ||||||
---|---|---|---|---|---|---|---|
[BMIM][DCA] | 205.3 | 24.4 | 712 | 0.2017 | 783 | 1035.8 | 0.8419 |
117.65 | -19738.88 | 0 | 0 | -12.16 | 4.29×10-19 | 6.00 |
表3 [BMIM][DCA]的Ridel方程参数
Table 3 Ridel equation parameters of [BMIM][DCA]
117.65 | -19738.88 | 0 | 0 | -12.16 | 4.29×10-19 | 6.00 |
x1 | x2 | T/K | lnγ1 | .lnγ2 | y1 |
---|---|---|---|---|---|
0.80 | 0.20 | 378.93 | 0.01920404 | -0.02093020 | 1.00 |
0.76 | 0.24 | 380.35 | 0.02195992 | -0.02733799 | 1.00 |
0.72 | 0.28 | 381.89 | 0.02378783 | -0.02956523 | 1.00 |
0.68 | 0.32 | 383.55 | 0.02480862 | -0.02933896 | 1.00 |
0.64 | 0.36 | 385.36 | 0.02513711 | -0.02771139 | 1.00 |
0.60 | 0.40 | 387.33 | 0.02486963 | -0.02532826 | 1.00 |
0.56 | 0.44 | 389.47 | 0.02408134 | -0.02258857 | 1.00 |
0.52 | 0.48 | 391.81 | 0.02282665 | -0.01973973 | 1.00 |
0.48 | 0.52 | 394.39 | 0.02114004 | -0.01693459 | 1.00 |
0.44 | 0.56 | 397.25 | 0.01903616 | -0.01426653 | 1.00 |
0.40 | 0.60 | 400.44 | 0.01650838 | -0.01179096 | 1.00 |
0.36 | 0.64 | 404.04 | 0.01352485 | -0.00953905 | 1.00 |
0.32 | 0.68 | 408.16 | 0.01002055 | -0.00752664 | 1.00 |
0.28 | 0.72 | 412.96 | 0.00588240 | -0.00575950 | 1.00 |
0.24 | 0.76 | 418.66 | 0.00092092 | -0.00423743 | 1.00 |
0.20 | 0.80 | 425.65 | -0.00518639 | -0.00295660 | 1.00 |
表4 基于COSMO-RS理论预测的等压水(1)+[BMIM][DCA](2)二元汽液平衡数据
Table 4 Isobaric VLE data for water (1) + [BMIM][DCA] (2) predicted based on COSMO-RS theory
x1 | x2 | T/K | lnγ1 | .lnγ2 | y1 |
---|---|---|---|---|---|
0.80 | 0.20 | 378.93 | 0.01920404 | -0.02093020 | 1.00 |
0.76 | 0.24 | 380.35 | 0.02195992 | -0.02733799 | 1.00 |
0.72 | 0.28 | 381.89 | 0.02378783 | -0.02956523 | 1.00 |
0.68 | 0.32 | 383.55 | 0.02480862 | -0.02933896 | 1.00 |
0.64 | 0.36 | 385.36 | 0.02513711 | -0.02771139 | 1.00 |
0.60 | 0.40 | 387.33 | 0.02486963 | -0.02532826 | 1.00 |
0.56 | 0.44 | 389.47 | 0.02408134 | -0.02258857 | 1.00 |
0.52 | 0.48 | 391.81 | 0.02282665 | -0.01973973 | 1.00 |
0.48 | 0.52 | 394.39 | 0.02114004 | -0.01693459 | 1.00 |
0.44 | 0.56 | 397.25 | 0.01903616 | -0.01426653 | 1.00 |
0.40 | 0.60 | 400.44 | 0.01650838 | -0.01179096 | 1.00 |
0.36 | 0.64 | 404.04 | 0.01352485 | -0.00953905 | 1.00 |
0.32 | 0.68 | 408.16 | 0.01002055 | -0.00752664 | 1.00 |
0.28 | 0.72 | 412.96 | 0.00588240 | -0.00575950 | 1.00 |
0.24 | 0.76 | 418.66 | 0.00092092 | -0.00423743 | 1.00 |
0.20 | 0.80 | 425.65 | -0.00518639 | -0.00295660 | 1.00 |
i组分 | j组分 | |||
---|---|---|---|---|
THF(1) | [BMIM][DCA](2) | 0.223 | 7135.79 | 145.11 |
乙醇(1) | [BMIM][DCA](2) | 1.661 | 183.70 | -281.25 |
水(1) | [BMIM][DCA](2) | 0.3031 | -455.17 | 670.44 |
表5 溶质-[BMIM][DCA]的NRTL方程参数
Table 5 NRTL equation parameters of solute-[BMIM][DCA]
i组分 | j组分 | |||
---|---|---|---|---|
THF(1) | [BMIM][DCA](2) | 0.223 | 7135.79 | 145.11 |
乙醇(1) | [BMIM][DCA](2) | 1.661 | 183.70 | -281.25 |
水(1) | [BMIM][DCA](2) | 0.3031 | -455.17 | 670.44 |
Unit | EDC1 | EDC2 | SRC |
---|---|---|---|
number of stages | 25 | 50 | 6 |
feed stage of FEED | 10 | 23 | 3 |
feed stage of IL | 2 | 2 | |
distillate rate/(kmol/h) | 30.02 | 30 | 39.98 |
re?ux ratio | 1.8 | 3.9 | 0.1 |
column diameter/m | 0.78 | 1.01 | 3.38 |
pressure(condenser)×10-5/Pa | 1 | 1 | 0.004 |
condenser duty/MW | -0.7033 | -1.6409 | -0.5353 |
reboiler duty/MW | 0.9955 | 2.3410 | 2.7699 |
THF purity/%(mass) | 100.00 | ||
ethanol purity/%(mass) | 100.00 | ||
water purity/%(mass) | 100.00 |
表6 流程模拟的条件和结果
Table 6 Conditions and results of process simulation
Unit | EDC1 | EDC2 | SRC |
---|---|---|---|
number of stages | 25 | 50 | 6 |
feed stage of FEED | 10 | 23 | 3 |
feed stage of IL | 2 | 2 | |
distillate rate/(kmol/h) | 30.02 | 30 | 39.98 |
re?ux ratio | 1.8 | 3.9 | 0.1 |
column diameter/m | 0.78 | 1.01 | 3.38 |
pressure(condenser)×10-5/Pa | 1 | 1 | 0.004 |
condenser duty/MW | -0.7033 | -1.6409 | -0.5353 |
reboiler duty/MW | 0.9955 | 2.3410 | 2.7699 |
THF purity/%(mass) | 100.00 | ||
ethanol purity/%(mass) | 100.00 | ||
water purity/%(mass) | 100.00 |
1 | 何志成, 张炳辉, 梁立新, 等. 从THF、乙醇、水三元混合物系中分离THF的研究[J]. 沈阳化工, 1995, (4): 30-32. |
He Z C, Zhang B H, Liang L X, et al. Study on the separation of tetrahydrofuran from a mixture of tetrahydrofuran, ethanol and water[J]. Shenyang Chemical Industry, 1995, (4): 30-32. | |
2 | Dai C, Lei Z, Xi X, et al. Extractive distillation with a mixture of organic solvent and ionic liquid as entrainer[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15786-15791. |
3 | Luis P, Amelio A, Vreysen S, et al. Simulation and environmental evaluation of process design: distillation vs. hybrid distillation-pervaporation for methanol / tetrahydrofuran separation[J]. Applied Energy, 2014, 113: 565-575. |
4 | Ramzan N, Degenkolbe S, Witt W. Evaluating and improving environmental performance of HC’s recovery system: a case study of distillation unit[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 201-213. |
5 | Zhang Z, Zhang Q, Li G, et al. Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1584-1599. |
6 | Wang Y, Bu G, Wang Y, et al. Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process[J]. Computers & Chemical Engineering, 2016, 95:97-107. |
7 | Liang S, Cao Y, Liu X, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control[J]. Chemical Engineering Research and Design, 2017, 117: 318-335. |
8 | Liang K, Li W, Luo H, et al. Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 7121-7131. |
9 | 汪勤, 张冰剑, 何畅, 等. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822. |
Wang Q, Zhang B J, He C, et al. Solvent evaluation model for aromatics extraction and distillation based on energy target[J]. CIESC Journal, 2019, 70(5): 1815-1822. | |
10 | 陈赟, 吕冉, 熊康宁, 等. 甲基异丙基甲酮-苯酚-对苯二酚-水的液液相平衡数据测定、模型关联及萃取过程模拟[J]. 化工学报, 2018, 69(4): 1299-1306. |
Chen Y, Lyu R, Xiong K N, et al. Liquid-liquid phase equilibrium data determination, model correlation and extraction process simulation of methyl isopropyl ketone-phenol- hydroquinone - water[J]. CIESC Journal, 2018, 69(4): 1299-1306. | |
11 | 朱林, 艾珍, 王大军, 等. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68: 218-224. |
Zhu L, Ai Z, Wang D J, et al. Simulation of H2S and CO2 separation using N-formylmorpholine and polyethylene glycol dimethyl ether solvent[J]. CIESC Journal, 2017, 68: 218-224. | |
12 | Gao Y, Xu L, Xu D, et al. Measurement and correlation of isobaric vapor-liquid equilibrium for binary systems of allyl alcohol with isobutyl acetate, butyl acetate, and butyl propionate at 101.3 kPa[J]. Journal of Chemical & Engineering Data, 2018, 63(3): 845-852. |
13 | Li W, Chen X, Yin H, et al. Isobaric vapor-liquid equilibrium for 2-butanone + ethanol system containing different ionic liquids at 101.3 kPa[J]. Journal of Chemical & Engineering Data, 2018, 63(2): 380-388. |
14 | 林毅, 曹晓艳, 顾正桂. 从THF、乙醇和水混合液中提取THF和乙醇的研究[J]. 化工时刊, 2018, (5): 1-5. |
Lin Y, Cao X Y, Gu Z G. Extraction of THF and ethanol from a mixture of THF, ethanol and water[J]. Chemical Industry Journal, 2018, (5): 1-5. | |
15 | Zhao Y, Zhao T, Jia H, et al. Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(9): 2433-2444. |
16 | Seiler M, Jork C, Kavarnou A, et al. Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids [J]. AIChE Journal, 2004, 50(10): 2439-2454. |
17 | Calvar N, González B, Gómez E, et al. Study of the behaviour of the azeotropic mixture ethanol-water with imidazolium-based ionic liquids [J]. Fluid Phase Equilibria, 2007, 259(1): 51-56. |
18 | Simoni L D, Ficke L E, Lambert C A, et al. Measurement and prediction of vapor-liquid equilibrium of aqueous 1-ethyl-3-methylimidazolium-based ionic liquid systems [J]. Industrial and Engineering Chemistry Research, 2010, 49(8): 3893-3901. |
19 | Cao L, Liu P, Wang B, et al. Vapor-liquid equilibria for tetrahydrofuran+ethanol system containing three different ionic liquids at 101.3kPa[J]. Fluid Phase Equilibria, 2014, 372: 49-55. |
20 | 刘潜, 张香兰, 李巍. 基于COSMO-RS模型的分离油酚混合物的离子液体萃取剂筛选[J]. 化工学报, 2018, 69(12): 181-192. |
Liu Q, Zhang X L, Li W. Screening of ionic liquid extractants for separation of oleophenol mixtures based on COSMO-RS model[J]. CIESC Journal, 2018, 69(12): 181-192. | |
21 | Song Z, Zhou T, Qi Z, et al. Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process[J]. Sustainable Chemistry & Engineering, 2017, 5(4): 3382-3389. |
22 | Paduszyński K, Domańska U. COSMO-RS screening for ionic liquid to be applied in extraction of 2-phenylethanol from aqueous solutions[J]. Journal of Molecular Liquids, 2018, 271: 305-312. |
23 | 杨小倩, 何昌春, 陈科侠, 等. 基于COSMO-RS方法筛选易于乙腈/水分离的离子液体[J]. 化工进展, 2011, 30(S2): 55-61. |
Yang X Q, He C C, Chen K X, et al. Screening of ionic liquids easily separated by acetonitrile/water based on COSMO-RS method[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 55-61. | |
24 | Valderrama J O, Forero L A, Rojas R E. Critical properties and normal boiling temperature of ionic liquids. Update and a new consistency test[J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7838-7844. |
25 | Chen H H, Chen M K, Chen B C, et al. Critical assessment of using an ionic liquid as entrainer via extractive distillation[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7768-7782. |
26 | Renon H, Prausnitz J M. Local composition in thermodynamic excess functions for liquid mixtures[J]. AIChE J., 1968, 14(1): 135-144. |
27 | Li W X, Du Y, Li J, et al. Isobaric vapor-liquid equilibrium for acetone+ methanol system containing different ionic liquids at 101.3kPa[J]. Fluid Phase Equilibria, 2018, 459: 10-17. |
28 | Li W X, Sun D, Zhang T, et al. Phase equilibrium study of binary and ternary mixtures of ionic liquids + acetone + methanol[J]. Journal of Chemical & Engineering Data, 2014, 59(12): 3975-3981. |
29 | Li W X, Yin H Y, Guo H F, et al. Separation abilities of three acetate-based ionic liquids for benzene-methanol mixture through vapor-liquid equilibrium experiment at 101.3 kPa[J]. Fluid Phase Equilibria, 2019, 492: 80-87. |
30 | 朱炜, 侯海云, 刘敏, 等. 正丙醇/水+乙腈汽液相平衡的测定、关联及预测[J]. 化学工程, 2018, 46(5): 38-41+68. |
Zhu W, Hou H Y, Liu M, et al. Determination, correlation and prediction of vapor-liquid equilibrium of n-propanol/water+acetonitrile[J]. Chemical Engineering, 2018, 46(5): 38-41+68. | |
31 | Sun D Z, Feng H S, Xin F, et al. Feasibility of ionic liquid as extractant for bio-butanol extraction: experiment and simulation[J]. Separation and Purification Technology, 2019, 215: 287-298. |
32 | 李文秀,陈金玲,张弢.萃取精馏分离苯-异丙醇共沸体系的模拟[J]. 现代化工, 2019, 39(2): 211-214. |
Li W X, Chen J L, Zhang T. Simulation of azeotrope separation of benzene-isopropanol by extractive distillation[J]. Modern Chemical Industry, 2019, 39(2): 211-214. | |
33 | Verdía P, González E J, Moreno D, et al. Deepening of the role of cation substituents on the extractive ability of pyridinium ionic liquids of N-compounds from fuels[J]. Sustainable Chemistry & Engineering, 2017, 5(2): 2015-2025. |
34 | Islam M R, Chen C C. COSMO-SAC sigma profile generation with conceptual segment concept[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4441-4454. |
35 | Ruiz E, Ferro V R, Palomar J, et al. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis[J]. The Journal of Physical Chemistry B, 2013, 117(24): 7388-7398. |
36 | Zhang Z, Zhang A, Wu K, et al. Separation of ethyl acetate and 2-propanol azeotropic mixture using ionic liquids as entrainers[J]. Fluid Phase Equilibria, 2016, 429: 331-338. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[8] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||