化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1802-1811.DOI: 10.11949/0438-1157.20190835
收稿日期:
2019-07-22
修回日期:
2019-10-10
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
相建华
作者简介:
周星宇(1994—),男,硕士研究生,基金资助:
Xingyu ZHOU1(),Fangui ZENG1,Jianhua XIANG1(),Xiaopeng DENG2,Xinghua XIANG2
Received:
2019-07-22
Revised:
2019-10-10
Online:
2020-04-05
Published:
2020-04-05
Contact:
Jianhua XIANG
摘要:
运用工业分析、元素分析及13C核磁共振波谱、X射线光电子能谱和傅里叶变换红外光谱分析,构建了马脊梁镜煤有机质大分子结构模型。在该结构模型中,芳环桥碳与周碳之比为0.24,芳环的类型以蒽、萘为主;脂肪碳原子主要是甲基、亚甲基和次甲基,氧接脂碳含量最少;每个大分子平均含氧原子22个,氧原子存在于酚羟基、羰基、羧基和醚氧中,个数分别为9、4、3和3;氮原子以一个吡啶和一个吡咯的方式存在。该结构模型的平均分子式为C222H168O22N2,分子量为3212。对所建分子模型分别进行了核磁共振碳谱、红外光谱及密度的模拟计算,并与测试结果进行对比验证。结果表明,所建模型能够较好地反映马脊梁镜煤有机质的大分子结构特征。
中图分类号:
周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
Xingyu ZHOU, Fangui ZENG, Jianhua XIANG, Xiaopeng DENG, Xinghua XIANG. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC Journal, 2020, 71(4): 1802-1811.
Proximate analysis/ % (mass) | Ultimate analysis/% (mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
0.74 | 1.70 | 20.30 | 38.18 | 81.69 | 5.09 | 11.14 | 1.35 | 0.73 |
表1 马脊梁烟煤样的工业分析和元素分析
Table 1 Proximate and ultimate analyses of MBC
Proximate analysis/ % (mass) | Ultimate analysis/% (mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
0.74 | 1.70 | 20.30 | 38.18 | 81.69 | 5.09 | 11.14 | 1.35 | 0.73 |
74.24% | 5.10% | 69.14% | 45.68% | 23.46% | 6.08% | 4.06% | 13.32% | 25.76% | 10.05% | 12.64% | 3.07% |
表2 马脊梁烟煤的核磁结构参数
Table 2 Structural parameters determined by 13C NMR of MBC
74.24% | 5.10% | 69.14% | 45.68% | 23.46% | 6.08% | 4.06% | 13.32% | 25.76% | 10.05% | 12.64% | 3.07% |
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
pyridine nitrogen | 398.90 | 40.48 |
pyrrole nitrogen | 400.44 | 44.54 |
quaternary nitrogen | 402.01 | 6.49 |
nitrogen oxide | 403.06 | 8.49 |
表3 马脊梁烟煤的XPS N(1s)数据
Table 3 X-Ray photoelectron spectra N (1s) data of MBC
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
pyridine nitrogen | 398.90 | 40.48 |
pyrrole nitrogen | 400.44 | 44.54 |
quaternary nitrogen | 402.01 | 6.49 |
nitrogen oxide | 403.06 | 8.49 |
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
mercaptan thiophenol | 163.96 | 58.79 |
thiophene type sulfide | 165.83 | 8.48 |
sulfoxide sulfur | 168.06 | 10.79 |
sulfone type sulfur | 169.45 | 13.72 |
inorganic sulfur | 171.06 | 8.20 |
表4 马脊梁烟煤的XPS S(2p)数据
Table 4 X-Ray photoelectron spectra S(2p) data of MBC
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
mercaptan thiophenol | 163.96 | 58.79 |
thiophene type sulfide | 165.83 | 8.48 |
sulfoxide sulfur | 168.06 | 10.79 |
sulfone type sulfur | 169.45 | 13.72 |
inorganic sulfur | 171.06 | 8.20 |
Serial No. | Peak position / | Relative area/% | Attribution |
---|---|---|---|
1 | 1010.93 | 10.57 | 灰分 |
2 | 1036.28 | 9.59 | 灰分 |
3 | 1058.61 | 4.55 | 灰分 |
4 | 1098.27 | 10.99 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
5 | 1184.82 | 10.02 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
6 | 1265.14 | 7.05 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
7 | 1335.24 | 6.66 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
8 | 1383.41 | 3.96 | |
9 | 1419.54 | 3.48 | |
10 | 1448.36 | 4.61 | |
11 | 1488.44 | 4.79 | 芳香烃的CC骨架振动 |
12 | 1570.09 | 6.71 | 芳香烃的CC骨架振动 |
13 | 1608.64 | 9.72 | 芳香烃的CC骨架振动 |
14 | 1649.66 | 4.68 | 共轭的 CO 的伸缩振动 |
15 | 1706.90 | 2.62 | 羧酸的 CO 的伸缩振动 |
表5 马脊梁烟煤FTIR吸收峰参数(1000~1800 cm-1)
Table 5 FTIR absorption peak parameters of MBC (1000—1800 cm-1)
Serial No. | Peak position / | Relative area/% | Attribution |
---|---|---|---|
1 | 1010.93 | 10.57 | 灰分 |
2 | 1036.28 | 9.59 | 灰分 |
3 | 1058.61 | 4.55 | 灰分 |
4 | 1098.27 | 10.99 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
5 | 1184.82 | 10.02 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
6 | 1265.14 | 7.05 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
7 | 1335.24 | 6.66 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
8 | 1383.41 | 3.96 | |
9 | 1419.54 | 3.48 | |
10 | 1448.36 | 4.61 | |
11 | 1488.44 | 4.79 | 芳香烃的CC骨架振动 |
12 | 1570.09 | 6.71 | 芳香烃的CC骨架振动 |
13 | 1608.64 | 9.72 | 芳香烃的CC骨架振动 |
14 | 1649.66 | 4.68 | 共轭的 CO 的伸缩振动 |
15 | 1706.90 | 2.62 | 羧酸的 CO 的伸缩振动 |
Molecular formula | Molecular weight | Element content/% | Aromaticity/% | |||
---|---|---|---|---|---|---|
C | H | O | N | |||
3212 | 82.94 | 5.13 | 10.96 | 0.97 | 69.14 |
表6 马脊梁烟煤分子结构模型的结构参数
Table 6 Structure parameters of MBC molecular structural mode
Molecular formula | Molecular weight | Element content/% | Aromaticity/% | |||
---|---|---|---|---|---|---|
C | H | O | N | |||
3212 | 82.94 | 5.13 | 10.96 | 0.97 | 69.14 |
Type | Quantities of aromatic structural units | |
---|---|---|
SDC | MBC | |
0 | 5 | |
9 | 5 | |
5 | 4 | |
1 | 1 | |
1 | 1 |
表7 马脊梁烟煤与神东煤结构中芳香结构单元的类型和数量
Table 7 Types and quantities of aromatic structural units of MBC and SDC structure
Type | Quantities of aromatic structural units | |
---|---|---|
SDC | MBC | |
0 | 5 | |
9 | 5 | |
5 | 4 | |
1 | 1 | |
1 | 1 |
1 | 彭苏萍, 张博, 王佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学, 2015, 17(9): 29-35. |
Peng S P, Zhang B, Wang T. China s coal resources “well” shape distribution characteristics and sustainable development strategy [J]. China Engineering Science, 2015, 17(9): 29-35. | |
2 | 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. |
Xie H P, Wang J H, Wang G F, et al. The new concept of coal revolution and the conception of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. | |
3 | 王素珍. 《物质结构与性质》和《有机化学基础》模块的教学时序对“有机物分子结构与性质”学习影响的研究[J]. 化学教学, 2014, (6): 16-19. |
Wang S Z. Study on the influence of the teaching time series of “Material Structure and Properties” and “Organic Chemistry Foundation” module on the learning and structure of organic matter[J]. Chemical Teaching, 2014, (6): 16-19. | |
4 | Heek K H V. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1): 1-26. |
5 | Mathews J P, Chaffee A L. The molecular representations of coal — a review[J]. Fuel, 2012, 96(1): 1-14. |
6 | 高天明, 张艳. 中国煤炭资源高效清洁利用路径研究[J]. 煤炭科学技术, 2018, 46(7): 157-164. |
Gao T M, Zhang Y. Study on the path of efficient and clean utilization of coal resources in China [J]. Coal Science and Technology, 2018, 46 (7): 157-164. | |
7 | Xue Y, Zhao W N, Ma P, et al. Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel[J]. Fuel, 2016, 177: 46-52. |
8 | 王宝俊, 张玉贵, 谢克昌. 量子化学计算在煤的结构与反应性研究中的应用[J]. 化工学报, 2003, 54(4): 477-488. |
Wang B J, Zhang Y G, Xie K C. Application of quantum chemistry calculation to investigation on coal structure and reactivity[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 477-488. | |
9 | 张硕, 张小东, 杨延辉, 等. 溶剂萃取下构造煤的XRD结构演化特征[J]. 光谱学与光谱分析, 2017, 37(10): 3220-3224. |
Zhang S, Zhang X D, Yang Y H, et al. XRD structure evolution characteristics of structural coal extracted with solvent [J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3220-3224. | |
10 | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438. |
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1435. | |
11 | Shine J H. From coal to single-stage and two-stage products: a reactive model of coal structure [J]. Fuel, 1984, 63(9): 1187-1196. |
12 | 蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6): 641-648. |
Lin H L, Li K J, Zhang X W. Structure characterization and model construction of Shangwan coal and it s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 641-648. | |
13 | 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717. |
Cui X, Yan H, Zhao P T. Summary of the construction and analysis methods of coal molecular structure model[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704-717. | |
14 | Li W, Zhu Y M, Chen S B, et al. Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652. |
15 | Yan G C, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156. |
16 | Xiang J H, Zeng F G, Li B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 391-400. |
17 | 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(5): 939-958. |
Qin Z H. The theory of coal inlay structure model[J]. Journal of China University of Mining & Technology, 2017, 46(5): 939-958. | |
18 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
Feng W, Gao H F, Wang G, et al. Molecular model construction of Zaoquan coal and molecular simulation of pyrolysis[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
19 | Meng J Q, Zhong R Q, Li S C, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal[J]. Energy & Fuels, 2018, 32(9): 9727-9737. |
20 | Gao M J, Li X X, Guo L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205. |
21 | 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. |
Wang J G, Zhao X H. Key technologies and demonstration of low-rank coal clean and efficient cascade utilization[J]. Journal of the Chinese Academy of Sciences, 2012, 27(3): 382-388. | |
22 | 李昌盛. 大同煤系地层中火成岩对煤层的影响研究[J]. 华北国土资源, 2017, (2): 58-59. |
Li C S. Study on the influence of igneous rocks on coal seam in Datong coal measures strata[J]. Huabei Land and Resources, 2017, (2): 58-59. | |
23 | 孙昱东, 王雪, 魏成, 等. 固定床渣油加氢脱金属废催化剂上焦炭结构和组成沿床层变化研究[J]. 燃料化学学报, 2019, 47(2): 167-173. |
Sun Y D, Wang X, Wei C, et al. Research for structure and composition of coke on spent commercial residue hydrotreating catalysts along HDM bed[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 167-173. | |
24 | 赵云刚. 脱灰处理对伊敏褐煤微观结构影响的实验与分子模拟研究[D]. 太原: 太原理工大学, 2018. |
Zhao Y G. Experimental and molecular simulation study on the effect of deashing treatment on the microstructure of Yimin lignite [D]. Taiyuan: Taiyuan University of Technology, 2018. | |
25 | 贾建波, 曾凡桂, 孙蓓蕾. 神东2-2煤镜质组大分子结构模型13C-NMR谱的构建与修正[J]. 燃料化学学报, 2011, 39(9): 652-657. |
Jia J B, Zeng F G, Sun B L. Construction and modification of 13C-NMR spectra of macromolecular structure model of Shendong 2-2 coal mirror group[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 652-657. | |
26 | Xiang J H, Zeng F G, Liang H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488. |
27 | 鄢晓忠, 邱靖, 尹艳山, 等. 褐煤中官能团对其燃烧特性的影响[J]. 煤炭科学技术, 2016, 44(4): 169-174. |
Yan X Z, Qiu J, Yin Y S, et al. Effect of functional groups on the combustion characteristics of lignite[J]. Coal Science and Technology, 2016, 44(4): 169-174. | |
28 | 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析, 2017, 37(8): 2406-2411. |
Ge T, Zhang M X, Ma X M. FTIR and XPS spectral characterization of coking coal structure in Xinyang [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2406-2411. | |
29 | 魏强, 唐跃刚, 李薇薇, 等. 煤中有机硫结构研究进展[J]. 煤炭学报, 2015, 40(8): 1911-1923. |
Wei Q, Tang Y G, Li W W, et al. Progress in the study of organic sulfur structure in coal [J]. Journal of Coal, 2015, 40 (8): 1911-1923. | |
30 | 申曙光, 李焕梅, 王涛, 等. 煤化程度对煤基固体酸结构及其水解纤维素性能的影响[J]. 燃料化学学报, 2013, 41(12): 1466-1472. |
Shen S G, Li H M, Wang T, et al. Influence of degree of coal mineralization on structure of coal-based solid acid and its hydrolytic cellulose performance [J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1466-1472. | |
31 | 李美芬, 曾凡桂, 孙蓓蕾, 等. 低煤级煤热解H2生成动力学及其与第一次煤化作用跃变的关系[J]. 物理化学学报, 2009, 25(12): 2597-2603. |
Li M F, Zeng F G, Sun B L, et al. The kinetics of H2 formation in pyrolysis of low coal grade coal and its relationship with the first coalification jump [J]. Journal of Physical Chemistry, 2009, 25 (12): 2597-2603. | |
32 | 李伍, 朱炎铭, 陈尚斌, 等. 低煤级煤生烃与结构演化的耦合机理研究[J]. 光谱学与光谱分析, 2013, 33(4): 1052-1056. |
Li W, Zhu Y M, Chen S B, et al. Coupling mechanism of hydrocarbon generation and structure evolution in low coal grade coal[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1052-1056. | |
33 | Dong K, Zeng F G, Jia J C, et al. Molecular simulation of the preferential adsorption of CH4 and CO2 in middle-rank coal[J]. Molecular Simulation, 2019, 45(1): 15-25. |
34 | 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506. |
Xiang J H, Zeng F G, Liang H Z, et al. Carbon structure characteristics and evolution mechanism of coal with different metamorphic degrees[J]. Journal of China Coal Society, 2016, 41(6): 1498-1506. | |
35 | Li Z K, Wei X Y, Yan H L, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuel, 2015, 29: 6869-6886. |
36 | 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
Li Z M, Wang Y M, Li P, et al. Construction of macromolecular model and quantum chemical calculation of Hongshiwan coal in Ningdong [J]. CIESC Journal, 2018, 69 (5): 2208-2216. | |
37 | Jia J B, Wang Y, Li F H, et al. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method[J]. Spectroscopy & Spectral Analysis, 2014, 34(1): 47-51. |
38 | 马延平, 相建华, 李美芬, 等. 柳林3#镜煤吡啶残煤大分子结构模型及分子模拟[J]. 燃料化学学报, 2012, 40(11): 1300-1309. |
Ma Y P, Xiang J H, Li M F, et al. Macromolecular structure model and molecular simulation of Liulin 3# mirror coal pyridine residual coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1300-1309. | |
39 | 张小东, 郝宗超, 张硕, 等. 溶剂改造下构造煤纳米级孔隙的差异性变化及机理[J]. 中国矿业大学学报, 2017, 46(1): 148-154. |
Zhang X D, Hao Z C, Zhang S, et al. The variation and mechanism of nano-scale pores in tectonic coal under solvent modification[J]. Journal of China University of Mining & Technology, 2017, 46(1): 148-154. | |
40 | Li Z, Ward C R, Gurba L W. Occurrence of non-mineral inorganic elements in macerals of low-rank coals[J]. Int. J. Coal Geol. , 2010, 81(4): 242-250. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[10] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 倪文翔, 赵京, 李博, 魏小林, 吴东垠, 刘迪, 王强. 转炉煤气全干法显热回收工艺中余热锅炉积灰特性研究[J]. 化工学报, 2023, 74(8): 3485-3493. |
[15] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||