1 |
Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541.
|
2 |
Ding B, Chen Z, Li Z, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662: 600-606.
|
3 |
Ding L, An X, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.
|
4 |
Li X, Hou L, Liu M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568.
|
5 |
Huang S, Jaffé P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions[J]. Biogeosciences Discussions, 2014, 11(8): 12295-12321.
|
6 |
Park W, Nam Y, Lee M, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium[J]. Biotechnology and Bioprocess Engineering, 2009, 14(5): 680-685.
|
7 |
Li X, Yuan Y, Huang Y, et al. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631/632: 153-157.
|
8 |
姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究[J]. 环境科学学报, 2019, 39(9): 2953-2963.
|
|
Yao H N, Zhang L Q, Li S G, et al. Study on the factors affecting simulated landfill leachate treatment by anaerobic ferric ammonia oxidation[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2953-2963.
|
9 |
Zhang M, Zhing P, Li W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification [J]. Bioresource Technology, 2015, 17 (09): 543–548
|
10 |
Klueglein N, Kappler A. Abiotic oxidation of Fe(Ⅱ) by reactive nitrogen species in cultures of the nitrate-reducing Fe(Ⅱ) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(Ⅱ) oxidation[J]. Geobiology, 2013, 11(2): 180-190.
|
11 |
Oshiki M, Ishii S, Yoshida K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria[J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093.
|
12 |
王茹, 刘梦瑜, 刘冰茵, 等. 共基质模式下铁盐脱氮反应器的运行性能及微生物学特征[J]. 环境科学, 2019, 40(12): 5446-5455.
|
|
Wang R, Liu M Y, Liu B Y, et al. Operational performance and microbiological characteristics of iron salt denitrification reactor in co-substrate mode[J]. Environmental Science, 2019, 40(12): 5446-5455.
|
13 |
Zhou J, Wang H, Yang K, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284.
|
14 |
Li X, Huang Y, Liu H, et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64: 42-50.
|
15 |
吴胤, 陈琛, 毛小云, 等. 基于Feammox的生物膜反应器性能研究[J]. 中国环境科学, 2017, 37(9): 3353-3362.
|
|
Wu Y, Chen C, Mao X Y, et al. Study on performance of the Feammox biofilm-reactor[J]. China Environmental Science, 2017, 37(9): 3353-3362.
|
16 |
王亚娥, 冯娟娟, 李杰, 等. 不同Fe(Ⅲ)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J]. 环境科学学报, 2014, 34(2): 377-384.
|
|
Wang Y E, Feng J J, Li X, et al. Effect and mechanism of nitrogen removal by dissimilatory reduction of different Fe(Ⅲ)in activated sludge[J]. Acta Scientiae Circumstantiae, 2014, 34(2): 377-384.
|
17 |
李健敏, 杨庆, 刘智斌, 等. Fe2+/Fe3+和Mn2+对低氧曝气过程总氮去除与转化途径的影响[J]. 化工学报, 2019, 70(9): 3503-3510.
|
|
Li J M, Yang Q, Liu Z B, et al. Influences of Fe2+/Fe3+and Mn2+ on total nitrogen removal and nitrogen transformations during low-oxygen aeration[J]. CIESC Journal, 2019, 70(9): 3503-3510.
|
18 |
从岩, 黄晓丽, 王小龙, 等. 厌氧氨氧化颗粒污泥快速形成[J]. 化工学报, 2014, 65(2): 664-671.
|
|
Cong Y, Huang X L, Wang X L, et al. Faster formation of Anammox granular sludge[J]. CIESC Journal, 2014, 65(2): 664-671
|
19 |
张永辉, 彭永臻, 曾立云, 等. 常温低基质厌氧氨氧化ASBR反应器的快速启动[J]. 工业水处理, 2017, 37(2): 43-47.
|
|
Zhang Y H, Peng Y Z, Zeng L Y, et al. Quick start-up of low-substrate Anammox ASBR reactor at normal temperature[J]. Industrial Water Treatment, 2017, 37(2): 43-47.
|
20 |
陈彦霖, 隋倩雯, 姜黎安, 等. 厌氧氨氧化菌快速富集培养及微生物机制解析[J]. 中国给水排水, 2018, 34(13): 26-31.
|
|
Chen Y L, Sui Q W, Jiang L A, et al. Quick enrichment of Anammox bacteria and microbial community mechanism analysis[J]. China Water & Wastewater, 2018, 34(13): 26-31.
|
21 |
李祥, 林兴, 杨朋兵, 等. 活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探[J]. 环境科学, 2016, 37(8): 3114-3119.
|
|
Li X, Lin X, Yang P B, et al. Simultaneous ferric reduction with ammonia oxidation phenomena in activated sludge in anaerobic environment[J]. Environmental Science, 2016, 37(8): 3114-3119.
|
22 |
Domazou A S, Gebicka L, Didik J, et al. The kinetics of the reaction of nitrogen dioxide with iron(Ⅱ)- and iron(Ⅲ) cytochrome c[J]. Free Radical Biology and Medicine, 2014, 69: 172-180.
|
23 |
Ding B, Li Z, Qin Y. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231: 379-386.
|
24 |
Yang Y, Zhang Y, Li Y, et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(Ⅲ) compounds[J]. Chemical Engineering Journal, 2018, 332: 711-716.
|
25 |
Etique M, Jorand F P A, Zegeye A, et al. Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis )[J]. Environmental Science & Technology, 2014, 48(7): 3742-3751.
|
26 |
Picardal F. Abiotic and microbial interactions during anaerobic transformations of Fe(Ⅱ) and NOx-[J]. Frontiers in Microbiology, 2012, 3: 1-7.
|
27 |
刘志文, 陈琛, 彭晓春, 等. 磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响[J]. 环境科学, 2018, 39(10): 4601-4611.
|
|
Liu Z W, Chen C, Peng X C, et al. Effect of magnetic chitosan hydrogel beads with immobilized Feammox bacteria on the removal of ammonium from wastewater[J]. Environmental Science, 2018, 39(10): 4601-4611.
|
28 |
Bao P, Li G. Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation[J]. Environmental Science & Technology, 2017, 51(12): 6691-6698.
|
29 |
Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
|
30 |
Liu Y, Ni B. Appropriate Fe (Ⅱ) addition significantly enhances anaerobic ammonium oxidation (Anammox) activity through improving the bacterial growth rate[J]. Scientific Reports, 2015, 5(1): 1-7.
|
31 |
Notini L, Byrne J M, Tomaszewski E J, et al. Mineral defects enhance bioavailability of goethite toward microbial Fe(Ⅲ) reduction[J]. Environmental Science & Technology, 2019, 53(15): 8883-8891.
|