化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3080-3090.DOI: 10.11949/0438-1157.20191294
黄桂冬1(),张凇源2,葛众1(),解志勇1,相华江1,鄢银连1,袁志鹏1
收稿日期:
2019-10-30
修回日期:
2020-03-23
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
葛众
作者简介:
黄桂冬(1996—),男,硕士研究生, 基金资助:
Guidong HUANG1(),Songyuan ZHANG2,Zhong GE1(),Zhiyong XIE1,Huajiang XIANG1,Yinlian YAN1,Zhipeng YUAN1
Received:
2019-10-30
Revised:
2020-03-23
Online:
2020-07-05
Published:
2020-07-05
Contact:
Zhong GE
摘要:
构建了内置换热器有机闪蒸循环(internal heat exchanger organic flash cycle, IHE-OFC)系统模型,采用100~200℃地热水作为热源,以R600a、R600、R601a、R601、R236ea、R227ea、R245fa、R123作为循环工质。研究了IHE-OFC系统的热性能,并以净输出功率为目标函数,对系统进行了优化。结果表明:当热源温度≤160℃时,R601 IHE-OFC系统的净输出功率最大;当热源温度≥190℃时,R601传统OFC系统的净输出功率最大;当热源温度为170℃时,R601a IHE-OFC系统的净输出功率最大;当热源温度为180℃时,R601a传统OFC系统的净输出功率最大。此外,每一工质均存在一个特征温度,为工质的0.85Pcri所对应的温度与加热器夹点温差之和。且因工质特征温度的影响,IHE-OFC系统的最优闪蒸压力、IHE冷流体温升和系统效率随热源温度的升高而均呈先增大后不变的趋势。
中图分类号:
黄桂冬, 张凇源, 葛众, 解志勇, 相华江, 鄢银连, 袁志鹏. 基于内置换热器有机闪蒸循环的热性能研究[J]. 化工学报, 2020, 71(7): 3080-3090.
Guidong HUANG, Songyuan ZHANG, Zhong GE, Zhiyong XIE, Huajiang XIANG, Yinlian YAN, Zhipeng YUAN. Thermal performance study of organic flash cycle based on internal heat exchanger[J]. CIESC Journal, 2020, 71(7): 3080-3090.
热源温度/℃ | ORC功率/kW | OFC功率/kW | 相对增量/% |
---|---|---|---|
124 | 340.53 | 363.04 | 6.61 |
126 | 391.18 | 422.14 | 7.91 |
128 | 444.65 | 478.42 | 7.60 |
130 | 495.31 | 526.27 | 6.25 |
132 | 540.34 | 585.37 | 8.33 |
134 | 593.81 | 636.02 | 7.11 |
136 | 644.47 | 692.31 | 7.42 |
138 | 686.68 | 740.15 | 7.79 |
140 | 737.34 | 790.81 | 7.25 |
142 | 787.99 | 841.46 | 6.79 |
144 | 830.21 | 897.75 | 8.14 |
146 | 880.86 | 948.41 | 7.67 |
148 | 925.89 | 990.62 | 6.99 |
150 | 976.55 | 1041.28 | 6.63 |
152 | 1018.76 | 1091.93 | 7.18 |
154 | 1066.60 | 1139.77 | 6.86 |
156 | 1111.63 | 1190.43 | 7.09 |
158 | 1156.66 | 1241.09 | 7.30 |
160 | 1201.69 | 1286.12 | 7.03 |
表1 R124的OFC与ORC的功率比较[16]
Table 1 Comparison of power of OFC and ORC of R124[16]
热源温度/℃ | ORC功率/kW | OFC功率/kW | 相对增量/% |
---|---|---|---|
124 | 340.53 | 363.04 | 6.61 |
126 | 391.18 | 422.14 | 7.91 |
128 | 444.65 | 478.42 | 7.60 |
130 | 495.31 | 526.27 | 6.25 |
132 | 540.34 | 585.37 | 8.33 |
134 | 593.81 | 636.02 | 7.11 |
136 | 644.47 | 692.31 | 7.42 |
138 | 686.68 | 740.15 | 7.79 |
140 | 737.34 | 790.81 | 7.25 |
142 | 787.99 | 841.46 | 6.79 |
144 | 830.21 | 897.75 | 8.14 |
146 | 880.86 | 948.41 | 7.67 |
148 | 925.89 | 990.62 | 6.99 |
150 | 976.55 | 1041.28 | 6.63 |
152 | 1018.76 | 1091.93 | 7.18 |
154 | 1066.60 | 1139.77 | 6.86 |
156 | 1111.63 | 1190.43 | 7.09 |
158 | 1156.66 | 1241.09 | 7.30 |
160 | 1201.69 | 1286.12 | 7.03 |
工质 | 摩尔质量/(g·mol-1) | 流体类型 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | GWP | ODP |
---|---|---|---|---|---|---|---|
R600a | 58.12 | 干流体 | -11.7 | 134.7 | 3.63 | ~20 | 0 |
R600 | 58.12 | 干流体 | -0.49 | 152.0 | 3.80 | ~20 | 0 |
R601a | 72.15 | 干流体 | 27.83 | 187.2 | 3.38 | ~20 | 0 |
R601 | 72.15 | 干流体 | 36.06 | 196.6 | 3.37 | ~20 | 0 |
R236ea | 152.04 | 干流体 | 6.19 | 139.3 | 3.36 | 710 | 0 |
R227ea | 170.03 | 干流体 | -16.34 | 101.8 | 2.93 | 3500 | 0 |
R245fa | 134.05 | 等熵流体 | 15.14 | 154.0 | 3.65 | 820 | 0 |
R123 | 152.93 | 等熵流体 | 27.82 | 183.7 | 3.36 | 120 | 0 |
表2 工质主要热物性和环保性能
Table 2 Major thermophysical properties and environmental performance of working fluids
工质 | 摩尔质量/(g·mol-1) | 流体类型 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | GWP | ODP |
---|---|---|---|---|---|---|---|
R600a | 58.12 | 干流体 | -11.7 | 134.7 | 3.63 | ~20 | 0 |
R600 | 58.12 | 干流体 | -0.49 | 152.0 | 3.80 | ~20 | 0 |
R601a | 72.15 | 干流体 | 27.83 | 187.2 | 3.38 | ~20 | 0 |
R601 | 72.15 | 干流体 | 36.06 | 196.6 | 3.37 | ~20 | 0 |
R236ea | 152.04 | 干流体 | 6.19 | 139.3 | 3.36 | 710 | 0 |
R227ea | 170.03 | 干流体 | -16.34 | 101.8 | 2.93 | 3500 | 0 |
R245fa | 134.05 | 等熵流体 | 15.14 | 154.0 | 3.65 | 820 | 0 |
R123 | 152.93 | 等熵流体 | 27.82 | 183.7 | 3.36 | 120 | 0 |
T3/K | PF/MPa | h5/(kJ·kg-1) | h6/ (kJ·kg-1) | ||||
---|---|---|---|---|---|---|---|
本文 | 文献[ | 相对误差/% | 本文 | 文献[ | 相对误差/% | ||
413 | 1.2 | 707.13 | 706.55 | 0.08 | 664.01 | 663.64 | 0.06 |
413 | 1.4 | 716.27 | 715.79 | 0.07 | 667.35 | 667.06 | 0.04 |
413 | 1.6 | 724.01 | 723.63 | 0.05 | 670.11 | 669.92 | 0.03 |
413 | 1.8 | 730.53 | 730.28 | 0.03 | 672.34 | 672.25 | 0.01 |
413 | 2.0 | 735.98 | 735.85 | 0.02 | 674.05 | 674.04 | 0.00 |
表3 本文结果与文献结果的比较
Table 3 Comparison of results of present and literature(butane)
T3/K | PF/MPa | h5/(kJ·kg-1) | h6/ (kJ·kg-1) | ||||
---|---|---|---|---|---|---|---|
本文 | 文献[ | 相对误差/% | 本文 | 文献[ | 相对误差/% | ||
413 | 1.2 | 707.13 | 706.55 | 0.08 | 664.01 | 663.64 | 0.06 |
413 | 1.4 | 716.27 | 715.79 | 0.07 | 667.35 | 667.06 | 0.04 |
413 | 1.6 | 724.01 | 723.63 | 0.05 | 670.11 | 669.92 | 0.03 |
413 | 1.8 | 730.53 | 730.28 | 0.03 | 672.34 | 672.25 | 0.01 |
413 | 2.0 | 735.98 | 735.85 | 0.02 | 674.05 | 674.04 | 0.00 |
参数 | 数值 |
---|---|
热源温度/ ℃ | 100~200 |
热流体流率/(kg·s-1) | 1 |
热流体压力/ MPa | 0.5,1.2,1.6 |
透平等熵效率/% | 68 |
工质泵等熵效率/% | 68 |
冷却水泵效率/% | 85 |
冷却水入口温度/℃ | 25 |
冷却水温升/℃ | 5 |
加热器夹点温差/℃ | 10 |
冷凝器夹点温差/℃ | 5 |
内置换热器传热温差/℃ | 5 |
环境温度/℃ | 15 |
表4 IHE-OFC系统参数设置
Table 4 System parameter setting of IHE-OFC
参数 | 数值 |
---|---|
热源温度/ ℃ | 100~200 |
热流体流率/(kg·s-1) | 1 |
热流体压力/ MPa | 0.5,1.2,1.6 |
透平等熵效率/% | 68 |
工质泵等熵效率/% | 68 |
冷却水泵效率/% | 85 |
冷却水入口温度/℃ | 25 |
冷却水温升/℃ | 5 |
加热器夹点温差/℃ | 10 |
冷凝器夹点温差/℃ | 5 |
内置换热器传热温差/℃ | 5 |
环境温度/℃ | 15 |
热源温 度/℃ | R600a | R600 | R601a | R601 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | |
100 | 0.52 | 0.55 | 5.61 | 1.42 | 1.46 | 2.23 | 3.11 | 3.16 | 1.75 | 3.38 | 3.43 | 1.50 |
110 | 2.25 | 2.30 | 2.16 | 3.20 | 3.25 | 1.60 | 5.20 | 5.28 | 1.55 | 5.51 | 5.58 | 1.39 |
120 | 4.76 | 4.83 | 1.42 | 5.57 | 5.64 | 1.28 | 7.83 | 7.94 | 1.41 | 8.17 | 8.27 | 1.26 |
130 | 8.35 | 8.42 | 0.86 | 8.64 | 8.73 | 1.01 | 11.01 | 11.14 | 1.23 | 11.37 | 11.49 | 1.12 |
140 | 11.37 | 11.47 | 0.85 | 12.62 | 12.71 | 0.70 | 14.84 | 15.00 | 1.02 | 15.18 | 15.32 | 0.98 |
150 | 12.48 | 12.79 | 2.46 | 17.98 | 18.03 | 0.29 | 19.38 | 19.53 | 0.78 | 19.63 | 19.79 | 0.80 |
160 | 13.88 | 14.11 | 1.66 | 20.87 | 21.01 | 0.65 | 24.72 | 24.84 | 0.48 | 24.81 | 24.95 | 0.57 |
170 | 15.15 | 15.44 | 1.97 | 22.78 | 23.04 | 1.17 | 31.07 | 31.10 | 0.09 | 30.88 | 30.96 | 0.27 |
180 | 16.42 | 16.79 | 2.23 | 24.70 | 25.09 | 1.61 | 38.89 | 38.55 | — | 38.02 | 37.98 | — |
190 | 17.71 | 18.14 | 2.46 | 26.63 | 27.16 | 1.99 | 46.55 | 45.79 | — | 46.90 | 46.30 | — |
200 | 19.01 | 19.51 | 2.66 | 28.59 | 29.25 | 2.33 | 49.97 | 49.71 | — | 54.85 | 53.90 | — |
表5 传统OFC系统与IHE-OFC系统净输出功率的比较
Table 5 Comparison of net power output between traditional OFC system and IHE-OFC system/kW
热源温 度/℃ | R600a | R600 | R601a | R601 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | 传统OFC | IHE-OFC | 相对增量/% | |
100 | 0.52 | 0.55 | 5.61 | 1.42 | 1.46 | 2.23 | 3.11 | 3.16 | 1.75 | 3.38 | 3.43 | 1.50 |
110 | 2.25 | 2.30 | 2.16 | 3.20 | 3.25 | 1.60 | 5.20 | 5.28 | 1.55 | 5.51 | 5.58 | 1.39 |
120 | 4.76 | 4.83 | 1.42 | 5.57 | 5.64 | 1.28 | 7.83 | 7.94 | 1.41 | 8.17 | 8.27 | 1.26 |
130 | 8.35 | 8.42 | 0.86 | 8.64 | 8.73 | 1.01 | 11.01 | 11.14 | 1.23 | 11.37 | 11.49 | 1.12 |
140 | 11.37 | 11.47 | 0.85 | 12.62 | 12.71 | 0.70 | 14.84 | 15.00 | 1.02 | 15.18 | 15.32 | 0.98 |
150 | 12.48 | 12.79 | 2.46 | 17.98 | 18.03 | 0.29 | 19.38 | 19.53 | 0.78 | 19.63 | 19.79 | 0.80 |
160 | 13.88 | 14.11 | 1.66 | 20.87 | 21.01 | 0.65 | 24.72 | 24.84 | 0.48 | 24.81 | 24.95 | 0.57 |
170 | 15.15 | 15.44 | 1.97 | 22.78 | 23.04 | 1.17 | 31.07 | 31.10 | 0.09 | 30.88 | 30.96 | 0.27 |
180 | 16.42 | 16.79 | 2.23 | 24.70 | 25.09 | 1.61 | 38.89 | 38.55 | — | 38.02 | 37.98 | — |
190 | 17.71 | 18.14 | 2.46 | 26.63 | 27.16 | 1.99 | 46.55 | 45.79 | — | 46.90 | 46.30 | — |
200 | 19.01 | 19.51 | 2.66 | 28.59 | 29.25 | 2.33 | 49.97 | 49.71 | — | 54.85 | 53.90 | — |
1 | Yang F B, Dong X R, Zhang H G, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions[J]. Energy Conversion and Management, 2014, 80: 243-255. |
2 | Ge Z, Wang H, Wang H T, et al. Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat[J]. Energy, 2015, 93: 1886-1895. |
3 | Li J, Ge Z, Duan Y Y, et al. Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling[J]. Applied Energy, 2019, 235: 1400-1414. |
4 | Ge Z, Li J, Liu Q, et al. Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery[J]. Energy Conversion and Management, 2018, 166: 201-214. |
5 | Liu Q, Duan Y Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids[J]. Energy, 2013, 63: 123-132. |
6 | Meng F X, Wang E H, Zhang B, et al. Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source[J]. Energy Conversion and Management, 2019, 195: 1295-1308. |
7 | Li J, Pei G, Li Y Z, et al. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures[J]. Energy, 2012, 38: 85-95. |
8 | Bao J J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 325-342. |
9 | Mondal S, De S. Power by waste heat recovery from low temperature industrial flue gas by organic flash cycle (OFC) and transcritical-CO2 power cycle: a comparative study through combined thermodynamic and economic analysis[J]. Energy, 2017, 121: 832-840. |
10 | Ho T, Mao S S, Greif R. Increased power production through enhancements to the organic flash cycle (OFC)[J]. Energy, 2012, 45(1): 686-695. |
11 | Mosaffa A H, Zareei A. Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle[J]. Geothermics, 2018, 72: 47-63. |
12 | Mondal S, Alam S, De S. Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector[J]. Energy, 2018, 163: 849-862. |
13 | Ho T, Mao S S, Greif R. Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42: 213-223. |
14 | Lee H Y, Park S H, Kim K K. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)[J]. Applied Thermal Engineering, 2016, 100: 680-890. |
15 | Baccioli A, Antonelli M, Desideri U. Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery[J]. Applied Energy, 2017, 199: 69-87. |
16 | Varma G V P, Srinivas T. Power generation from low temperature heat recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 75: 402-414. |
17 | 高增丽, 刘永启, 高振强. 管内介质为蒸汽状态下的填充床内置换热器外壁传热[J]. 冶金能源, 2018, 37(4): 29-32. |
Gao Z L, Liu Y Q, Gao Z Q. Outer wall heat transfer of heat exchanger embedded in honeycomb ceramic packed bed under condition of steam flow medium[J]. Energy for Metallurgical Industry, 2018, 37(4): 29-32. | |
18 | 高增丽, 刘永启, 高振强, 等. 基于煤矿乏风热氧化的填充床内置换热器取热特性[J]. 煤炭学报, 2015, 40(6): 1402-1407. |
Gao Z L, Liu Y Q, Gao Z Q, et al. Heat extraction characteristic of packed bed embedded heat exchanger based on thermal oxidation of coal mine VAM[J]. Journal of China Coal Society, 2015, 40(6): 1402-1407. | |
19 | 李惟毅, 郭强, 高静. 内置换热器的不同工质ORC系统的综合评价分析[J]. 化工进展, 2015, 34(8): 2977-2982. |
Li W Y, Guo Q, Gao J. Comprehensive evaluation analysis of ORC system using different working media with internal heat exchanger[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2977-2982. | |
20 | 卢金玲, 张洁, 郑亚, 等. 边界条件对非共沸混合工质有机朗肯循环的影响[J]. 工程热物理学报, 2018, 39(2): 256-261. |
Lu J L, Zhang J, Zheng Y, et al. Influence of different restrictive condensation on the thermodynamic performance of organic Rankine cycle using zeotropic mixtures[J]. Journal of Engineering Thermophysics, 2018, 39(2): 256-261. | |
21 | Lu J L, Zhang J, Chen S L, et al. Analysis of organic Rankine cycles using zeotropic mixtures as working fluids under different restrictive conditions[J]. Energy Conversion and Management, 2016, 126: 704-716. |
22 | 苏文, 赵力, 邓帅. 基于工质物性的热力循环性能探索[J]. 科学通报, 2018, 63(2): 232-240. |
Su W, Zhao L, Deng S. The performance of thermodynamic cycles based on the properties of working fluids[J]. Chinese Science Bulletin, 2018, 63(2): 232-240. | |
23 | 陈玉婷, 徐燕燕, 王磊, 等. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733. |
Chen Y T, Xu Y Y, Wang L, et al. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system[J]. CIESC Journal, 2019, 70(5): 1723-1733. | |
24 | 李鹏, 韩中合, 贾晓强, 等. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541. |
Li P, Han Z H, Jia X Q, et al. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541. | |
25 | 刘茜, 李华山, 卜宪标, 等. 太阳能有机朗肯-闪蒸循环工质选择[J]. 化工进展, 2018, 37(5): 1781-1788. |
Liu Q, Li H S, Bu X B, et al. Working fluid selection for solar binary-flashing cycle[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1781-1788. | |
26 | 高建强, 孙鑫, 曲振肖, 等. 太阳能超临界有机朗肯循环的工质选择和性能分析[J]. 太阳能学报, 2015, 36(8): 2002-2007. |
Gao J Q, Sun X, Qu Z X, et al. Selection of working fluid and performance analysis of solar supercritical organic Rankine cycle[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 2002-2007. | |
27 | 高乃平, 吴继盛, 朱彤. 采用二元非共沸工质的有机朗肯循环热力学分析[J]. 同济大学学报(自然科学版), 2018, 46(8): 1122-1130. |
Gao L P, Wu J S, Zhu T. Thermodynamic analysis of organic Rankine cycle based on binary zeotropic mixtures[J]. Journal of Tongji University (Natural Science), 2018, 46(8): 1122-1130. | |
28 | 朱启的, 孙志强, 周孑民. 工质类型对回收中低温余热有机朗肯循环性能的影响[J]. 中南大学学报(自然科学版), 2013, 44(3): 1215-1220. |
Zhu Q D, Sun Z Q, Zhou Z M. Effect of working fluid types on performance of organic Rankine cycle for low-and-medium temperature waste heat recovery[J]. Journal of Tongji University (Natural Science), 2013, 44(3): 1215-1220. | |
29 | Yang F B, Chu Q F, Liu Q, et al. The cubic-plus-association equation of state for hydrofluorocarbons, hydrofluoroolefins, and their binary mixtures[J]. Chemical Engineering Science, 2019, 209: 115-182. |
30 | Liu X, Li H S, Bu X B, et al. Performance characteristics and working fluid selection for low-temperature binary-flashing cycle[J]. Applied Thermal Engineering, 2018, 141: 51-60. |
31 | Wang W,He S,Guo S,et al. A combined experimental and simulation study on charging process of Erythritol-HTO direct-blending based energy storage system[J]. Energy Conversion and Management, 2014, 83(7): 306-313. |
32 | Li J, Ge Z, Duan Y Y, et al. Performance analyses and improvement guidelines for organic Rankine cycles using R600a/R601a mixtures driven by heat sources of 100℃ to 200℃[J]. International Journal of Energy Research, 2019, 43(2): 905-920. |
33 | Lemort V, Quoilin S, Cuevas C, et al. Testing and modeling a scroll expander integrated into an organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||