1 |
Zhu X, Wang D, Craig V S J. Interaction of particles with surfactant thin films: implications for dust suppression [J]. Langmuir, 2019, 35(24): 7641-9.
|
2 |
邢耀文, 桂夏辉, 曹亦俊, 等. 相互作用力及液膜排液动力学研究进展 [J]. 煤炭学报, 2019, 44(10): 3185-92.
|
|
Xing Y W, Gui X H, Cao Y J, et al. Advance in the interaction force between bubble and particle and the thinning dynamics of thin liquid film [J]. Journal of China Coal Society, 2019, 44(10): 3185-92.
|
3 |
Ally J, Kappl M, Butt H J, et al. Detachment force of particles from air-liquid interfaces of films and bubbles [J]. Langmuir, 2010, 26(23): 18135-43.
|
4 |
Coursey J S, Kim J, Flow F. Nanofluid boiling: the effect of surface wettability [J]. International Journal of Heat, 2008, 29(6): 1577-1585.
|
5 |
Moreira T A, Moreira D C, Ribatski G. Nanofluids for heat transfer applications: a review [J]. Journal of the Brazilian Society of Mechanical Sciences, 2018, 40(6): 303.
|
6 |
Quan X, Wang D, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid [J]. Int. J. Heat Mass Transfer, 2017, 108: 32-40.
|
7 |
Wang D, Quan X, Liu C, et al. An experimental investigation on periodic single bubble growth and departure from a small heater submerged in a nanofluid containing moderately hydrophilic nanoparticles [J]. Int. Commun. Heat Mass Transfer, 2018, 95: 1-8.
|
8 |
Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles [J]. Angew. Chem. Int. Ed., 2010, 44(24): 3722-3725.
|
9 |
Dippenaar A. The destabilization of froth by solids(Ⅰ):The mechanism of film rupture [J]. Int. J. Miner. Process., 1982, 9(1): 1-14.
|
10 |
Horozov T. Foams and foam films stabilised by solid particles [J]. Curr. Opin. Colloid Interface Sci., 2008, 13(3): 134-140.
|
11 |
Kaptay G. Interfacial criteria for stabilization of liquid foams by solid particles [J]. Colloids Surf. A, 2003, 230(1/2/3): 67-80.
|
12 |
Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams [J]. Colloids Surf. A, 2006, 282/283(1): 387-401.
|
13 |
Morris G, Neethling S J, Cilliers J J. Predicting the failure of a thin liquid film loaded with spherical particles [J]. Langmuir, 2014, 30(4): 995-1003.
|
14 |
Aveyard R, Binks B P, Fletcher P D I, et al. Aspects of aqueous foam stability in the presence of hydrocarbon oils and solid particles [J]. Adv. Colloid Interface Sci., 1994, 48(94): 93-120.
|
15 |
Aveyard R, Cooper P, Fletcher P D I, et al. Foam breakdown by hydrophobic particles and nonpolar oil [J]. Langmuir, 1993, 9(2): 604-613.
|
16 |
Aronson M P. Influence of hydrophobic particles on the foaming of aqueous surfactant solutions [J]. Langmuir, 1986, 2(5): 653-659.
|
17 |
Morris G, Pursell M R, Neethling S J, et al. The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film [J]. J. Colloid Interface Sci., 2008, 327(1): 138-144.
|
18 |
Garrett P R. Defoaming: antifoams and mechanical methods [J]. Curr. Opin. Colloid Interface Sci., 2015, 20(2): 81-91.
|
19 |
Hunter T N, Pugh R J, Franks G V, et al. The role of particles in stabilising foams and emulsions [J]. Adv. Colloid Interface Sci., 2008, 137(2): 57-81.
|
20 |
Thareja P, Moritz K, Velankar S S. Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size [J]. Rheol. Acta, 2010, 49(3): 285-298.
|
21 |
Frye G C, Berg J C. Antifoam action by solid particles [J]. J. Colloid Interface Sci., 1988, 127(1): 222-238.
|
22 |
Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅰ): Theoretical foundation [J]. J. Fluid Mech., 1994, 271: 285-309.
|
23 |
Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅱ): Numerical results [J]. J. Fluid Mech., 1994, 271: 311-339.
|
24 |
Joshi A S, Sun Y. Multiphase lattice Boltzmann method for particle suspensions [J]. Phys. Rev. E: Stat. Nonlinear Soft Matter. Phys., 2009, 79(6): 066703.
|
25 |
Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows [J]. Comput. Fluids, 2012, 53:93-104.
|
26 |
Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation [J]. J. Fluid Mech., 1998, 373: 287-311.
|
27 |
Huang H, Thorne D T, Schaap M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models [J]. Phys. Rev. E Stat Nonlin. Soft. Matter. Phys., 2007, 76: 066701.
|
28 |
Gong S, Cheng P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer [J]. Int. J. Heat Mass Transfer, 2012, 55(17/18): 4923-4927.
|
29 |
Xiong W, Cheng P, Quan X, et al. Droplet impact on a layer of solid particles placed above a substrate: a 3D lattice Boltzmann study [J]. Comput. Fluids, 2019, 188: 18-30.
|
30 |
Wang D, Cheng P, Quan X. Photothermal nanobubble nucleation on a plasmonic nanoparticle: a 3D lattice Boltzmann simulation [J]. Int. J. Heat Mass Transfer, 2019, 140: 786-797.
|
31 |
Liu X, Cheng P, Quan X. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface [J]. Int. J. Heat Mass Transfer, 2014, 73:195-200.
|
32 |
Garrett P R. The Science of Defoaming: Theory, Experiment and Applications [M]. CRC Press, 2014.
|