1 |
康开华, 才满瑞. 欧洲过渡性实验飞行器项目[J]. 导弹与航天运载技术, 2012, (4): 58-62.
|
|
Kang K H, Cai M R. European intermediate experimental vehicle project[J]. Missiles and Space Vehicles, 2012, (4): 58-62.
|
2 |
王国栋. 惯性/卫星组合导航系统综述[J]. 科技视界, 2019, (21): 115-117.
|
|
Wang G D. Research progress of inertial / satellite integrated navigation system[J]. Science & Technology Vision, 2019, (21): 115-117.
|
3 |
Zhashitov V E D, Pankratov V M. Using the method of elementary balances for analysis and synthesis of thermal control system for FOG SINS based on Peltier modules[J]. Gyroscopy and Navigation, 2014, 5(4): 245-256.
|
4 |
Mason W, Wedekind D. Prediction and measurement of strapdown inertial measurement unit performance on lunar missions[C]//The AIAA Guidance, Control and Flight Mechanics Conference. 2013, 49(439): 136-139.
|
5 |
Niu X J, Li Y, Zhang H P, et al. Fast thermal calibration of low-grade inertial sensors and inertial measurement units[J]. Sensors, 2013, 13(9): 12192-12217.
|
6 |
Dzhashitov V E, Pankratov V M. Control of temperature fields of a strapdown inertial navigation system based on fiber optic gyroscopes[J]. Journal of Computer and Systems Sciences International, 2014, 53(4): 565-575.
|
7 |
Lefèvre H C. The fiber-optic gyroscope: achievement and perspective[J]. Gyroscopy and Navigation, 2012, 3(4): 223-226.
|
8 |
张鹏飞, 龙兴武. 机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J]. 宇航学报, 2006, 27(3): 522-526.
|
|
Zhang P F, Long X W. Research on temperature compensation model of inertial sensor in mechanically dithered RLG’s SINS[J]. Astronaut, 2006, 27(3): 522-526.
|
9 |
刘元元, 杨功流, 尹洪亮. 基于双模型的光纤陀螺温度补偿方法[J]. 中国惯性技术学报, 2015, 23(1): 131-136.
|
|
Liu Y Y, Yang G L, Yin H L. Temperature compensation for fiber optic gyroscope based on dual models[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136.
|
10 |
刘元元, 杨功流, 李思宜. BP-Bagging模型再光纤陀螺温度补偿中的应用[J]. 中国惯性技术学报, 2014, 22(2): 254-259.
|
|
Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259.
|
11 |
Jadav K, Panchal M. Optimizing weights of artificial neural networks using genetic algorithms[J]. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2012, 1(10): 47-51.
|
12 |
程煜明, 张炎华. 光纤陀螺非线性温度漂移模型的辨识[J]. 上海交通大学学报, 1997, 31(12): 123-125, 129.
|
|
Cheng Y M, Zhang Y H. Novel optimal designation methodology of ship SINS initial alignment[J]. Journal of Shanghai Jiao Tong University, 1997, 31(12): 123-125, 129.
|
13 |
周琪, 秦永元, 赵长山. 光纤陀螺温度漂移误差的模糊补偿方案研究[J]. 传感技术学报, 2010, 23(7): 926-930.
|
|
Zhou Q, Qin Y Y, Zhao C S. Research on fuzzy compensation method of temperature drift for fiber optical gyro[J]. Chinese Journal of Sensors and Actuators, 2010, 23(7): 926-930.
|
14 |
钱峰, 田蔚风, 杨艳娟, 等. 基于受控马氏链的干涉型光纤陀螺温度漂移模型[J]. 光电子·激光, 2003, 14(7): 705-708.
|
|
Qian F, Tian W F, Yang Y J, et al. A model on temperature drift of interference fiber optical gyros based on controlled Markov chain[J]. Journal of Optoelectronics· Laser, 2003, 14(7): 705-708.
|
15 |
Becker D, Nielsen J E, Diogo A S, et al. Drift reduction in strapdown airborne gravimetry using a simple thermal correction[J]. Journal of Geodesy, 2015, 89(11): 1133-1144.
|
16 |
Zhashitov V E D, Pankratov V M. Hierarchical thermal models of FOG-based strapdown inertial navigation system[J]. Gyroscopy and Navigation, 2014, 5(3): 162-173.
|
17 |
Dranitsyna E V, Egorov D A, Untilov A A, et al. Reducing the effect of temperature variations on FOG output signal[J]. Gyroscopy and Navigation, 2013, 4(2): 92-98.
|
18 |
Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Wiley, 1998: 24-29.
|
19 |
Cao J L, Wang M H, Cai S K, et al. Optimized design of the SGA-WZ strapdown airborne gravimeter temperature control system[J]. Sensors, 2015, 15(12): 29984-29996.
|
20 |
Golikov A V, Pankratov V M. Analysis of temperature fields in angular velocity measurement units on fiber-optic gyros[J]. Gyroscopy and Navigation, 2018, 9(2): 116-123.
|
21 |
王怀光, 范红波, 任国全, 等. 基于增量式PID控制的半导体制冷温控系统[J]. 现代制造工程, 2013, (11): 110-113.
|
|
Wang H G, Fan H B, Ren G Q, et al. The semiconductor refrigerator temperature control system based on increasing PID controlling method[J]. Modern Manufacturing Engineering, 2013, (11): 110-113.
|
22 |
向前. 某型号激光捷联惯组温控温补系统设计[D]. 长沙: 国防科学技术大学, 2010.
|
|
Xiang Q. The temperature control and compensation system for the certain laser gyro strapdown inertial measurement unit[D]. Changsha: National University of Defense Technology, 2010.
|
23 |
Zhang R P. Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves[J]. IOP Conference Series Earth and Environmental Science, 2017, 61(1): 012003.
|
24 |
韩玉. 航空电子设备用热管研究[D]. 南京: 南京航空航天大学, 2005.
|
|
Han Y. Investigation on application of a flat-plate heat pipe to cooling aeronautical electronics component[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005.
|
25 |
李玉东. 半导体多级制冷性能组合优化设计[D]. 上海: 同济大学, 2007.
|
|
Li Y D. Combined optimal design on performance of multi-stage semiconductor cooling[D]. Shanghai: Tongji University, 2007.
|
26 |
吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2019, 40(6): 1-12.
|
|
Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: a review[J]. Journal of Refrigeration, 2019, 40(6): 1-12.
|
27 |
李爱博. 单级半导体制冷器制冷特性分析及研究[D]. 武汉: 华中科技大学, 2011.
|
|
Li A B. Analysis and study on cooling performance of single-stage thermoelectric cooling devices[D]. Wuhan: Huazhong University of Science and Technology, 2011.
|
28 |
王芳. 保温材料热导率影响因素试验研究[J]. 上海纺织科技, 2019, 47(6): 36-38.
|
|
Wang F. Influencing factors of thermal conductivity of thermal insulation materials[J]. Shanghai Textile Science & Technology, 2019, 47(6): 36-38.
|
29 |
尹雨晨, 雷辉, 曾一兵, 等. 绝缘高辐射散热涂层配方设计及性能研究[J]. 涂料工业, 2016, 46(7): 7-11.
|
|
Yin Y C, Lei H, Zeng Y B, et al. Formulation design and properties of insulating coating with high radiation and heat dissipation[J]. Paint & Coatings Industry, 2016, 46(7): 7-11.
|
30 |
刘志锴. 钛合金表面含铝复合氧化物涂层制备及其辐射防热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
Liu Z K. Preparation and radiation ability of aluminum contained composite oxides coatings on titanium alloys[D]. Harbin: Harbin Institute of Technology, 2018.
|