化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 46-54.DOI: 10.11949/0438-1157.20200489
收稿日期:
2020-05-06
修回日期:
2020-05-21
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
高明
作者简介:
高明(1982—),男,博士,副教授,基金资助:
Ming GAO(),Qirong ZUO,Lingshuang ZHANG,Da ZHANG,Lixin ZHANG
Received:
2020-05-06
Revised:
2020-05-21
Online:
2020-11-06
Published:
2020-11-06
Contact:
Ming GAO
摘要:
将激光干涉法和高速摄像技术相结合,研究了疏水ITO加热表面生成的单个乙醇气泡的动态特性,观测研究了其底部的微液层,并与之前的亲水加热表面的气泡生长脱离过程进行对比分析。本实验同时使用两台高速摄像机:一台记录气泡底部微液层干涉条纹,另一台从侧面同步记录单个气泡的生长和脱离图像。通过对这些图像逐帧比较,并与亲水表面的气泡生长过程对比后,发现疏水表面气泡的生长周期没有等待期,且脱离期时间远大于生长期,气泡底部的微液层存在形态不稳定,气泡在生长和脱离过程中会发生随机滑移现象。
中图分类号:
高明, 左启蓉, 张凌霜, 张达, 章立新. 疏水表面沸腾气泡底部微液层生长特性[J]. 化工学报, 2020, 71(S2): 46-54.
Ming GAO, Qirong ZUO, Lingshuang ZHANG, Da ZHANG, Lixin ZHANG. Growth characteristics of microlayer at bottom of boiling bubble on hydrophobic heating surface[J]. CIESC Journal, 2020, 71(S2): 46-54.
图8 不同干涉条纹下对应的微液层示意图(左:整体气泡 右:局部微液层)
Fig.8 Schematic diagram of microlayer corresponding to different interference fringes (left: bubble; right: microlayer)
图9 干涉条纹图像(左)和同步气泡生长和脱离图像(右)(热通量为25.7 kW/m2)
Fig.9 Interference fringe images (left) and synchronous bubble growth and departure photos (right)(heat flux=25.7 kW/m2)
1 | Giustini G, Jung S, Kim H, et al. Microlayer evaporation during steam bubble growth [J]. International Journal of Thermal Sciences, 2019, 137: 45-54. |
2 | Kenning D B R, Yan Y. Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography [J]. International Journal of Heat and Mass Transfer, 1996, 39(15): 3117-3137. |
3 | 胡自成, 王谦, 李昌烽, 等. 添加表面活性剂的沸腾换热强化研究进展[J]. 制冷学报, 2012, 33(6): 38-45. |
Hu Z C, Wang Q, Li C F, et al. Review on boiling heat transfer enhancement of surfactant solutions [J]. Journal of Refrigeration, 2012, 33(6): 38-45. | |
4 | 王政. 飞机机翼热控方案研究及热管传热特性分析[D]. 南京: 南京航空航天大学, 2009: 12-26. |
Wang Z. Research on airplane wing thermal control scheme and analysis of heat pipe heat transfer characteristics [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 12-26. | |
5 | Quan X J, Chen G, Cheng P. Effects of electric field on microbubble growth in a microchannel under pulse heating [J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 2110-2115. |
6 | Jung S, Kim H. Hydrodynamic formation of a microlayer underneath a boiling bubble [J]. International Journal of Heat and Mass Transfer, 2018, 120: 1229-1240. |
7 | Ogata J Y A. Augmentation of boiling heat transfer by utilising the END effect-EHD behaviour of boiling bubbles and heat transfer characteristics [J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 783-791. |
8 | 董智广, 郁鸿凌, 董伟, 等. 电场中气泡行为的变化及对沸腾换热的影响[J]. 化工学报, 2009, 60(1): 15-20. |
Dong Z G, Yu H L, Dong W, et al. Change of bubble behavior in electric field and its effects on boiling heat transfer [J]. CIESC Journal, 2009, 60(1): 15-20. | |
9 | Snyder N R, Edwards D K. Summary of conference on bubble dynamics and boiling heat transfer[J]. JPL Memo, 1956, 20: 20-137. |
10 | Kim J. Review of nucleate pool boiling bubble heat transfer mechanisms [J]. International Journal of Multiphase Flow, 2009, 35(12): 1067-1076. |
11 | Moore F D, Mesler R B. The measurement of rapid surface temperature fluctuations during nucleate boiling of water [J]. AIChE Journal, 1961, 7(4): 620-624. |
12 | Sharp R R. The nature of liquid film evaporation during nucleate boiling [R]. National Aeronautics and Space Administration, 1964. |
13 | Klausner J F, Mei R, Bernhard D M, et al. Vapor bubble departure in forced convection boiling [J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 651-662. |
14 | Jawurek H H. Simultaneous determination of microlayer geometry and bubble growth in nucleate boiling [J]. International Journal of Heat and Mass Transfer, 1969, 12(8): 843-848. |
15 | Cooper M, Lloyd A. The microlayer in nucleate pool boiling [J]. International Journal of Heat and Mass Transfer, 1969, 12(8): 895-913. |
16 | Gao M, Zhang L X, Cheng P, et al. An investigation of microlayer beneath nucleation bubble by laser interferometric method [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 183-189. |
17 | Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230. |
18 | Chen Z H, Haginiwa A, Utaka Y. Detailed structure of microlayer in nucleate pool boiling for water measured by laser interferometric method [J]. International Journal of Heat and Mass Transfer, 2017, 108: 1285-1291. |
19 | Voutsinos C M, Judd R L. Laser interferometric investigation of the microlayer evaporation phenomenon [J]. Journal of Heat Transfer, 1975, 97(1): 88-92. |
20 | Koffman L D. Ⅰ. Experimental observations of the microlayer in vapor bubble growth on a heated solid. Ⅱ. An investigation of the theory of evaporation and condensation[D]. Pasadena: California Institute of Technology, 1980. |
21 | MacGregor H G, Jawurek H H. High speed ciné laser interferometry technique for microlayer studies in boiling[J]. N&O Joernaal, 1992, 4: 1-7. |
22 | Qi B J, Wang Y, Wei J J, et al. Nucleate boiling heat transfer model based on fractal distribution of bubble sizes [J]. International Journal of Heat and Mass Transfer, 2019, 128: 1175-1183. |
23 | 柴立和, 彭晓峰, 王补宣. 池内核态沸腾换热新模型[J]. 化工学报, 2000, 51(5): 598-603. |
Chai L H, Peng X F, Wang B X. New model for pool nucleate boiling heat transfer [J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 598-603. | |
24 | 刁彦华, 赵耀华, 王秋良. R113池沸腾气泡行为的可视化及传热机理[J]. 化工学报, 2005, 56(2): 227-234. |
Diao Y H, Zhao Y H, Wang Q L. Bubble dynamics and heat transfer mechanism of pool boiling of R113 [J]. Journal of Chemical Industry and Engineering (China), 2005, 56(2): 227-234. | |
25 | Zhao Y H, Masuoka T, Tsuruta T. Theoretical studies on transient pool boiling based on microlayer model [J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4325-4331. |
26 | Koffman L D, Plesset M S. Experimental observations of the microlayer in vapor bubble growth on a heated solid [J]. Journal of Heat Transfer, 1983, 105(3): 625-632. |
27 | Hänsch S, Walker S. Microlayer formation and depletion beneath growing steam bubbles [J]. International Journal of Multiphase Flow, 2019, 111: 241-263. |
28 | Liu J N, Gao M, Zhang L S, et al. A laser interference/high-speed photography method for the study of triple phase contact-line movements and lateral rewetting flow during single bubble growth on a small hydrophilic heated surface [J]. International Communications in Heat and Mass Transfer, 2019, 100: 111-117. |
29 | Utaka Y, Hu K, Chen Z, et al. Measurement of contribution of microlayer evaporation applying the microlayer volume change during nucleate pool boiling for water and ethanol [J]. International Journal of Heat and Mass Transfer, 2018, 125: 243-247. |
30 | 孔新, 魏进家, 张永海. 亲疏水表面换热性能及其沸腾现象的微细化研究[J]. 工程热物理学报, 2018, 39(6): 1373-1378. |
Kong X, Wei J J, Zhang Y H. Investigation on heat transfer performance and micronization boiling phenomenon of hydrophilic/hydrophobic surfaces [J]. Journal of Engineering Thermophysics, 2018, 39(6): 1373-1378. | |
31 | 周常新, 范利镲, 袁希钢, 等. 乙醇及正丙醇水溶液与金属表面接触角测量[J]. 化工进展, 2007, 26(z1): 72-76. |
Zhou C X, Fan L C, Yuan X G, et al. Measurement of contact angle between ethanol and n-propanol aqueous solution on metal surface [J]. Chemical Industry and Engineering Progress, 2007, 26(z1): 72-76. | |
32 | Hai T P, Caney N, Marty P, et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism [J]. International Journal of Heat and Mass Transfer, 2009, 52(23): 5459-5471. |
33 | Ding W, Krepper E, Hampel U. Evaluation of the microlayer contribution to bubble growth in horizontal pool boiling with a mechanistic model that considers dynamic contact angle and base expansion [J]. International Journal of Heat and Fluid Flow, 2018, 72: 274-287. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[11] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[12] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[15] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||