10 |
Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells [J]. Appl. Therm. Eng., 2019, 151: 475-485.
|
11 |
Zhao J T, Lü P Z, Rao Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack [J]. Exp. Therm. Fluid Sci., 2017, 82: 182-188.
|
12 |
Greco A, Cao D P, Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J]. J. Power Sources, 2014, 257: 344-355.
|
13 |
Zhou H B, Zhou F, Xu L P, et al. Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe [J]. Int. J. Heat Mass Transf., 2019, 131: 984-998.
|
14 |
Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. J. Power Sources, 2002, 110(2): 377-382.
|
15 |
Yu K H, Yang X, Cheng Y Z, al et, Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. J. Power Sources, 2014, 270: 193-200.
|
16 |
Shahid S, Agelin-Chaab M. Experimental and numerical studies on air cooling and temperature uniformity in a battery pack [J]. Int. J. Energ. Res., 2018, 42(6): 2246-2262.
|
17 |
Wang S X, Li K X, Tian Y, et al. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow [J]. Appl. Therm. Eng., 2019, 152: 445-454.
|
18 |
Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study [J]. Energies, 2017, 10(10): 22.
|
19 |
Chen K, Wu W X, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern [J]. Energy, 2019, 167: 781-790.
|
20 |
Zhang J H, Kang H F, Wu K L, et al. The impact of enclosure and boundary conditions with a wedge-shaped path and air cooling for battery thermal management in electric vehicles [J]. Int. J. Energ. Res., 2018, 42(13): 4054-4069.
|
1 |
Li W, Xiao M, Peng X B, et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs [J]. Appl. Therm. Eng., 2018, 147: 90-100.
|
2 |
Lu Z, Yu X L, Wei L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement [J]. Appl. Therm. Eng., 2018, 136: 28-40.
|
3 |
Peng X B, Ma C, Garg A, et al. Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells [J]. Appl. Therm. Eng., 2019, 153: 596-603.
|
21 |
Fan L W, Khodadadi J M, Pesaran A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles [J]. J. Power Sources, 2013, 238: 301-312.
|
22 |
Hong S H, Zhang X Q, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent [J]. Int. J. Heat Mass Transf., 2018, 116: 1204-1212.
|
4 |
Deng T, Ran Y, Zhang G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries [J]. Appl. Therm. Eng., 2019, 150: 1186-1196.
|
5 |
Panchal S, Khasow R, Dincer I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery [J]. Appl. Therm. Eng., 2017, 122: 80-90.
|
6 |
Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system [J]. Int. J. Energ. Res., 2017, 41(15): 2468-2479.
|
7 |
Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection [J]. Int. J. Therm. Sci., 2019, 141: 47-61.
|
8 |
Huang Q Q, Li X X, Zhang G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system [J]. Appl. Therm. Eng., 2018, 141: 1092-1100.
|
9 |
Zhang X, Liu C Z, Rao Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material [J]. Clean. Prod., 2018, 201: 916-924.
|
23 |
Wang T, Tseng K J, Zhao J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Appl. Energ., 2014, 134: 229-238.
|
24 |
Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles [J]. J. Power Sources, 2013, 239: 30-36.
|
25 |
Sun H G, Wang X H, Tossan B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack [J]. J. Power Sources, 2012, 206: 349-356.
|
26 |
Sun H G, Dixon R. Development of cooling strategy for an air cooled lithium-ion battery pack [J]. J. Power Sources, 2014, 272: 404-414.
|
27 |
Xie J H, Ge Z J, Zang M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system [J]. Appl. Therm. Eng., 2017, 126: 583-593.
|
28 |
白帆飞, 陈明彪, 宋文吉, 等. 锂离子电池组风冷结构设计与优化[J]. 新能源进展, 2016, 4(5): 358-363.
|
|
Bai F F, Chen M B, Song W J, et al. Design and optimization of air-cooled structure for lithium-ion battery pack [J]. Advances in New and Renewable Energy, 2016, 4(5): 358-363.
|
29 |
Chen K, Wang S F, Song M X, et al. Structure optimization of parallel air-cooled battery thermal management system [J]. Int. J. Heat Mass Transf., 2017, 111: 943-952.
|
30 |
Chen K, Chen Y M, She Y Q, et al. Construction of effective symmetrical air-cooled system for battery thermal management [J]. Appl. Therm. Eng., 2020, 166: 114679.
|
31 |
Wu W X, Wu W, Wang S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material [J]. Int. J. Heat Mass Transf., 2018, 121: 967-977.
|