化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 55-61.DOI: 10.11949/0438-1157.20200484
收稿日期:
2020-05-06
修回日期:
2020-05-08
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
汪双凤
作者简介:
陈凯(1986—),男,博士,副研究员,基金资助:
Kai CHEN(),Junsheng HOU,Yiming CHEN,Shuangfeng WANG(
)
Received:
2020-05-06
Revised:
2020-05-08
Online:
2020-11-06
Published:
2020-11-06
Contact:
Shuangfeng WANG
摘要:
针对并行流道风冷式动力电池热管理系统,开发了一种导流板形状优化方法。采用控制点描述导流板的形状,结合数值模拟方法,以电池组温差极小化为优化目标,通过逐步调整控制点高度优化导流板形状。典型算例结果表明,采用提出的优化方法优化Z形风冷系统的进口导流板形状,可显著提高系统的散热性能。在不同冷却空气流量下,与原始系统相比,优化后系统在压降增加20%的情况下,电池组最高温度下降了3.7 K以上,最大温差减小了85%以上;与文献中的Z形流道优化系统相比,本研究的优化系统在保证系统压降基本不变的情况下,电池组温差减小了48%以上。
中图分类号:
陈凯, 侯竣升, 陈逸明, 汪双凤. 并行流道风冷式电池热管理系统的导流板形状优化[J]. 化工学报, 2020, 71(S2): 55-61.
Kai CHEN, Junsheng HOU, Yiming CHEN, Shuangfeng WANG. Shape optimization of plenums in parallel air-cooled battery thermal management system[J]. CIESC Journal, 2020, 71(S2): 55-61.
参数 | 取值 |
---|---|
进口尺寸,Lin | 20 mm |
出口尺寸,Lout | 20 mm |
冷却通道间距,Dcc | 3 mm |
电池个数,Nb | 12×2 |
电池尺寸 | 16 mm × 151 mm × 65 mm |
进口空气流量,Q0 | 0.015 m3/s |
进口空气温度,T0 | 298.15 K |
空气热导率,λa | 0.0267 W/(m?K) |
空气密度,ρa | 1.165 kg/m3 |
空气比热容,cp,a | 1005 J/(kg?K) |
空气动力黏性系数,μ | 1.86×10-5 kg/(m?s) |
电池热导率,λb,x, λb,y, λb,z | 1.05, 21.1, 21.1 W/(m?K) |
电池密度,ρb | 1542.9 kg/m3 |
电池比热容,cp,b | 1337 J/(kg?K) |
表1 计算参数
Table 1 Calculation parameters
参数 | 取值 |
---|---|
进口尺寸,Lin | 20 mm |
出口尺寸,Lout | 20 mm |
冷却通道间距,Dcc | 3 mm |
电池个数,Nb | 12×2 |
电池尺寸 | 16 mm × 151 mm × 65 mm |
进口空气流量,Q0 | 0.015 m3/s |
进口空气温度,T0 | 298.15 K |
空气热导率,λa | 0.0267 W/(m?K) |
空气密度,ρa | 1.165 kg/m3 |
空气比热容,cp,a | 1005 J/(kg?K) |
空气动力黏性系数,μ | 1.86×10-5 kg/(m?s) |
电池热导率,λb,x, λb,y, λb,z | 1.05, 21.1, 21.1 W/(m?K) |
电池密度,ρb | 1542.9 kg/m3 |
电池比热容,cp,b | 1337 J/(kg?K) |
n | R | 拟合得到的多项式 |
---|---|---|
2 | 0.988 | y=-0.0255x2+0.0945x-0.0965 |
3 | 0.991 | y=-1.669x3+0.5528x2+0.0427x-0.0956 |
4 | 0.991 | y=13.0582x4-7.7018x3+1.4317x2-0.0007x-0.0953 |
5 | 0.991 | y=-185.952x5+120.4454x4-29.4875x3+3.2501x2- 0.0533x-0.095 |
表2 进口导流板形状曲线
Table 2 Optimized curves of inlet plenum
n | R | 拟合得到的多项式 |
---|---|---|
2 | 0.988 | y=-0.0255x2+0.0945x-0.0965 |
3 | 0.991 | y=-1.669x3+0.5528x2+0.0427x-0.0956 |
4 | 0.991 | y=13.0582x4-7.7018x3+1.4317x2-0.0007x-0.0953 |
5 | 0.991 | y=-185.952x5+120.4454x4-29.4875x3+3.2501x2- 0.0533x-0.095 |
n | R | Tmax/K | ΔTmax/K | Δp/Pa |
---|---|---|---|---|
2 | 0.988 | 331.4 | 2.1 | 57.9 |
3 | 0.991 | 331.4 | 1.0 | 57.8 |
4 | 0.991 | 331.3 | 1.1 | 57.7 |
5 | 0.991 | 331.2 | 1.1 | 57.6 |
表3 进口导流板形状优化结果
Table 3 Shape optimization results of inlet plenum
n | R | Tmax/K | ΔTmax/K | Δp/Pa |
---|---|---|---|---|
2 | 0.988 | 331.4 | 2.1 | 57.9 |
3 | 0.991 | 331.4 | 1.0 | 57.8 |
4 | 0.991 | 331.3 | 1.1 | 57.7 |
5 | 0.991 | 331.2 | 1.1 | 57.6 |
系统 | Q0=0.010 m3/s | Q0=0.015 m3/s | Q0=0.020 m3/s | ||||||
---|---|---|---|---|---|---|---|---|---|
Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | |
Z | 338.8 | 8.1 | 23.0 | 336.4 | 9.7 | 47.3 | 334.6 | 10.8 | 80.8 |
Zopt0 | 335.6 | 2.3 | 28.1 | 331.9 | 2.7 | 58.1 | 329.2 | 3.2 | 98.8 |
Zopt | 335.1 | 1.2 | 28.2 | 331.4 | 1.1 | 57.8 | 328.6 | 1.2 | 98.0 |
表4 不同进口流量下风冷系统性能比较
Table4 Performance of the air-cooled BTMSs under different inlet flow rates
系统 | Q0=0.010 m3/s | Q0=0.015 m3/s | Q0=0.020 m3/s | ||||||
---|---|---|---|---|---|---|---|---|---|
Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | Tmax/K | ΔTmax/K | Δp/Pa | |
Z | 338.8 | 8.1 | 23.0 | 336.4 | 9.7 | 47.3 | 334.6 | 10.8 | 80.8 |
Zopt0 | 335.6 | 2.3 | 28.1 | 331.9 | 2.7 | 58.1 | 329.2 | 3.2 | 98.8 |
Zopt | 335.1 | 1.2 | 28.2 | 331.4 | 1.1 | 57.8 | 328.6 | 1.2 | 98.0 |
10 | Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells [J]. Appl. Therm. Eng., 2019, 151: 475-485. |
11 | Zhao J T, Lü P Z, Rao Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack [J]. Exp. Therm. Fluid Sci., 2017, 82: 182-188. |
12 | Greco A, Cao D P, Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J]. J. Power Sources, 2014, 257: 344-355. |
13 | Zhou H B, Zhou F, Xu L P, et al. Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe [J]. Int. J. Heat Mass Transf., 2019, 131: 984-998. |
14 | Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. J. Power Sources, 2002, 110(2): 377-382. |
15 | Yu K H, Yang X, Cheng Y Z, al et, Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. J. Power Sources, 2014, 270: 193-200. |
16 | Shahid S, Agelin-Chaab M. Experimental and numerical studies on air cooling and temperature uniformity in a battery pack [J]. Int. J. Energ. Res., 2018, 42(6): 2246-2262. |
17 | Wang S X, Li K X, Tian Y, et al. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow [J]. Appl. Therm. Eng., 2019, 152: 445-454. |
18 | Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study [J]. Energies, 2017, 10(10): 22. |
19 | Chen K, Wu W X, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern [J]. Energy, 2019, 167: 781-790. |
20 | Zhang J H, Kang H F, Wu K L, et al. The impact of enclosure and boundary conditions with a wedge-shaped path and air cooling for battery thermal management in electric vehicles [J]. Int. J. Energ. Res., 2018, 42(13): 4054-4069. |
1 | Li W, Xiao M, Peng X B, et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs [J]. Appl. Therm. Eng., 2018, 147: 90-100. |
2 | Lu Z, Yu X L, Wei L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement [J]. Appl. Therm. Eng., 2018, 136: 28-40. |
3 | Peng X B, Ma C, Garg A, et al. Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells [J]. Appl. Therm. Eng., 2019, 153: 596-603. |
21 | Fan L W, Khodadadi J M, Pesaran A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles [J]. J. Power Sources, 2013, 238: 301-312. |
22 | Hong S H, Zhang X Q, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent [J]. Int. J. Heat Mass Transf., 2018, 116: 1204-1212. |
4 | Deng T, Ran Y, Zhang G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries [J]. Appl. Therm. Eng., 2019, 150: 1186-1196. |
5 | Panchal S, Khasow R, Dincer I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery [J]. Appl. Therm. Eng., 2017, 122: 80-90. |
6 | Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system [J]. Int. J. Energ. Res., 2017, 41(15): 2468-2479. |
7 | Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection [J]. Int. J. Therm. Sci., 2019, 141: 47-61. |
8 | Huang Q Q, Li X X, Zhang G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system [J]. Appl. Therm. Eng., 2018, 141: 1092-1100. |
9 | Zhang X, Liu C Z, Rao Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material [J]. Clean. Prod., 2018, 201: 916-924. |
23 | Wang T, Tseng K J, Zhao J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Appl. Energ., 2014, 134: 229-238. |
24 | Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles [J]. J. Power Sources, 2013, 239: 30-36. |
25 | Sun H G, Wang X H, Tossan B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack [J]. J. Power Sources, 2012, 206: 349-356. |
26 | Sun H G, Dixon R. Development of cooling strategy for an air cooled lithium-ion battery pack [J]. J. Power Sources, 2014, 272: 404-414. |
27 | Xie J H, Ge Z J, Zang M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system [J]. Appl. Therm. Eng., 2017, 126: 583-593. |
28 | 白帆飞, 陈明彪, 宋文吉, 等. 锂离子电池组风冷结构设计与优化[J]. 新能源进展, 2016, 4(5): 358-363. |
Bai F F, Chen M B, Song W J, et al. Design and optimization of air-cooled structure for lithium-ion battery pack [J]. Advances in New and Renewable Energy, 2016, 4(5): 358-363. | |
29 | Chen K, Wang S F, Song M X, et al. Structure optimization of parallel air-cooled battery thermal management system [J]. Int. J. Heat Mass Transf., 2017, 111: 943-952. |
30 | Chen K, Chen Y M, She Y Q, et al. Construction of effective symmetrical air-cooled system for battery thermal management [J]. Appl. Therm. Eng., 2020, 166: 114679. |
31 | Wu W X, Wu W, Wang S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material [J]. Int. J. Heat Mass Transf., 2018, 121: 967-977. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 532
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||