化工学报 ›› 2021, Vol. 72 ›› Issue (1): 398-424.DOI: 10.11949/0438-1157.20201297
收稿日期:
2020-09-10
修回日期:
2020-11-17
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
赵宇飞,宋宇飞
作者简介:
任静(1998—),女,博士研究生,基金资助:
REN Jing1(),TAN Ling1,ZHAO Yufei1,2(),SONG Yufei1()
Received:
2020-09-10
Revised:
2020-11-17
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHAO Yufei,SONG Yufei
摘要:
能源短缺和环境污染是全人类面临的巨大挑战,对化石燃料的过度依赖使CO2的排放量急剧增加,如何将过量的温室气体通过清洁的方式转变为燃料或其他高值化学品,已成为全球范围内的研究热点和难点。在过去几十年的研究中,通过太阳能和电化学方法来还原CO2被证明是十分清洁有效的方法,可以有效降低全球碳足迹,实现化石资源的高效利用。近几年来,超薄二维材料(诸如水滑石、氧化物、钙钛矿等)在催化领域的卓越性能引起了人们的广泛关注,其电子结构存在更多的调变可能,并且可以通过修饰其表面,使其在更多催化反应中发挥作用。本文总结了近几年来超薄二维材料在光催化和电催化还原CO2的前沿进展,并总结其调变规律,为设计高效光、电催化剂提供参考。
中图分类号:
任静, 谭玲, 赵宇飞, 宋宇飞. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424.
REN Jing, TAN Ling, ZHAO Yufei, SONG Yufei. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction[J]. CIESC Journal, 2021, 72(1): 398-424.
61 | Xiang Y G, Dong W B, Wang P, et al. Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water [J]. Applied Catalysis B: Environmental, 2020, 274: 119096. |
62 | Jayaramulu K, Masa J, Morales D M, et al. Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution [J]. Advanced Science, 2018, 5(11): 1801029. |
63 | Wu J X, Yuan W W, Xu M, et al. Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2 [J]. Chemical Communications, 2019, 55(77): 11634-11637. |
64 | Tang M Y, Shen H M, Sun Q. Two-dimensional Fe-hexaaminobenzene metal–organic frameworks as promising CO2 catalysts with high activity and selectivity [J]. The Journal of Physical Chemistry C, 2019, 123(43): 26460-26466. |
65 | Wang T T, Zeng Z M, Cao L Y, et al. A dynamically stabilized single-nickel electrocatalyst for selective reduction of oxygen to hydrogen peroxide [J]. Chemistry – A European Journal, 2018, 24(64): 17011-17018. |
66 | Fang Y X, Flake J C. Electrochemical reduction of CO2 at functionalized Au electrodes [J]. Journal of the American Chemical Society, 2017, 139(9): 3399-3405. |
67 | Lim C H, Holder A M, Hynes J T, et al. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine [J]. Journal of the American Chemical Society, 2014, 136(45): 16081-16095. |
68 | Guo Y, Shi W J, Yang H J, et al. Cooperative stabilization of the [pyridinium-CO2-Co] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction [J]. Journal of the American Chemical Society, 2019, 141(44): 17875-17883. |
69 | Zhu X J, Zhang T M, Sun Z J, et al. Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution [J]. Advanced Materials, 2017, 29(17): 1605776. |
70 | Bai L C, Wang X, Tang S B, et al. Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions [J]. Advanced Materials, 2018, 30(40): 1803641. |
71 | Ryder C R, Wood J D, Wells S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry [J]. Nature Chemistry, 2016, 8(6): 597-602. |
72 | Zhu X W, Huang S Q, Yu Q, et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion [J]. Applied Catalysis B: Environmental, 2020, 269: 118760. |
1 | McCollum D, Bauer N, Calvin K, et al. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds [J]. Climatic Change, 2013, 123(3/4): 413-426. |
2 | Davis S J, Caldeira K, Matthews H D. Future CO2 emissions and climate change from existing energy infrastructure [J]. Science, 2010, 329(5997): 1330-1333. |
3 | Shi J F, Jiang Y J, Jiang Z Y, et al. Enzymatic conversion of carbon dioxide [J]. Chemical Society Reviews, 2015, 44(17): 5981-6000. |
4 | Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide [J]. Advanced Materials, 2016, 28(18): 3423-3452. |
5 | Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors [J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
6 | Grodkowski J, Neta P. Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions [J]. The Journal of Physical Chemistry B, 2001, 105(21): 4967-4972. |
7 | Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
8 | Klankermayer J, Wesselbaum S, Beydoun K, et al. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry [J]. Angewandte Chemie International Edition, 2016, 55(26): 7296-7343. |
9 | Sun Z Y, Ma T, Tao H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials [J]. Chem., 2017, 3(4): 560-587. |
10 | Grills D C, Matsubara Y, Kuwahara Y, et al. Electrocatalytic CO2 reduction with a homogeneous catalyst in ionic liquid: high catalytic activity at low overpotential [J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 2033-2038. |
11 | Zhang L, Zhao Z J, Gong J L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms [J]. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353. |
12 | Chang X X, Wang T, Gong J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
13 | Fu J W, Jiang K X, Qiu X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions [J]. Materials Today, 2020, 32: 222-243. |
14 | Tu W G, Zhou Y, Liu Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane [J]. Advanced Functional Materials, 2013, 23(14): 1743-1749. |
15 | Teramura K, Wang Z, Hosokawa S, et al. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water [J]. Chemistry – A European Journal, 2014, 20(32): 9906-9909. |
16 | Diercks C S, Liu Y, Cordova K E, et al. The role of reticular chemistry in the design of CO2 reduction catalysts [J]. Nature Materials, 2018, 17(4): 301-307. |
17 | Zhu M, Ge Q F, Zhu X. Catalytic reduction of CO2 to CO via reverse water gas shift reaction: recent advances in the design of active and selective supported metal catalysts [J]. Transactions of Tianjin University, 2020, 26(3): 172-187. |
18 | 李家意, 丁一, 张卫, 等. 基于二维材料及其范德瓦尔斯异质结的光电探测器[J]. 物理化学学报, 2019, 35(10): 1058-1077. |
Li J Y, Ding Y, Zhang W, et al. Photodetectors based on two-dimensional materials and their van der Waals heterostructures [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1058-1077. | |
19 | Zhao Y F, Waterhouse G I N, Chen G B, et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks [J]. Chemical Society Reviews, 2019, 48(7): 1972-2010. |
20 | Chernikov A, van der Zande A M, Hill H M, et al. Electrical tuning of exciton binding energies in monolayer WS2 [J]. Physical Review Letters, 2015, 115(12): 126802. |
21 | Wang H T, Yuan H T, Hong S S, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides [J]. Chemical Society Reviews, 2015, 44(9): 2664-2680. |
22 | Tao H C, Zhang Y Q, Gao Y N, et al. Scalable exfoliation and dispersion of two-dimensional materials-an update [J]. Physical Chemistry Chemical Physics, 2017, 19(2): 921-960. |
23 | Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures [J]. Nature Nanotechnology, 2016, 11(3): 218-230. |
24 | Kondratenko E V, Mul G, Baltrusaitis J, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes [J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. |
25 | Zhang C X, Chen C H, Dong H X, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis [J]. Science, 2015, 348(6235): 690-693. |
26 | Li C H, Wang F, Yu J C. Semiconductor/biomolecular composites for solar energy applications [J]. Energy & Environmental Science, 2011, 4(1): 100-113. |
27 | Ji Y F, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: the essential role of oxygen vacancy [J]. Journal of the American Chemical Society, 2016, 138(49): 15896-15902. |
28 | Vasileff A, Xu C C, Jiao Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction [J]. Chem, 2018, 4(8): 1809-1831. |
29 | Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors [J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
30 | Wang L Z, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities [J]. Chemical Reviews, 2014, 114(19): 9455-9486. |
31 | 尹雅芝, 胡兵, 刘国亮, 等. 利用ZnO@ZIF-8核壳结构构建高选择性、高稳定性的Pd/ZnO催化剂用于CO2加氢制甲醇[J]. 物理化学学报, 2019, 35(3): 327-336. |
Yin Y Z, Hu B, Liu G L, et al. ZnO@ZIF-8 core-shell structure as host for highly selective and stable Pd/ZnO catalysts for hydrogenation of CO2 to methanol [J]. Acta Physico-Chimica Sinica, 2019, 35(3): 327-336. | |
32 | Guo Q, Liang F, Li X B, et al. Efficient and selective CO2 reduction integrated with organic synthesis by solar energy [J]. Chem., 2019, 5(10): 2605-2616. |
33 | Evans D, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chemical Communications, 2006, 37: 485-496. |
34 | Ghoussoub M, Xia M, Duchesne P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis [J]. Energy & Environmental Science, 2019, 12(4): 1122-1142. |
35 | Wang F F, Huang Y J, Chai Z G, et al. Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8 [J]. Chemical Science, 2016, 7(12): 6887-6893. |
36 | Guo Q, Xia S G, Li X B, et al. Flower-like cobalt carbide for efficient carbon dioxide conversion [J]. Chemical Communications, 2020, 56(57): 7849-7852. |
37 | Chen G B, Gao R, Zhao Y F, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons [J]. Advanced Materials, 2018, 30(3): 1704663. |
38 | 来天艺, 王纪康, 李天, 等. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J], 化工学报, 2020, 71(10): 4327-4349. |
Lai T Y, Wang J K, Li T, et al. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts [J]. CIESC Journal, 2020, 71(10): 4327-4349. | |
39 | Li C C, Wang T, Liu B, et al. Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials [J]. Energy & Environmental Science, 2019, 12(3): 923-928. |
40 | Cheng W H, Richter M H, Sullivan I, et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination [J]. ACS Energy Letters, 2020, 5(2): 470-476. |
41 | Hori Y. Electrochemical CO2 reduction on metal electrodes [M]// Vayenas C G, White R E, Gamboa-Aldeco M E. Modern Aspects of Electrochemistry. New York: Springer, 2008: 89-189. |
42 | Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J]. Science, 2018, 360(6390): 783-787. |
43 | Ren W H, Zhao C. Paths towards enhanced electrochemical CO2 reduction [J]. National Science Review, 2019, 7(1): 7-9. |
44 | Cui X J, Li W, Ryabchuk P, et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts [J]. Nature Catalysis, 2018, 1(6): 385-397. |
45 | Zheng Y, Vasileff A, Zhou X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts [J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659. |
46 | Higgins D, Hahn C, Xiang C X, et al. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm [J]. ACS Energy Letters, 2019, 4(1): 317-324. |
47 | Zhong M, Tran K, Min Y M, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning [J]. Nature, 2020, 581(7807): 178-183. |
48 | Wang Y H, Wang Z Y, Dinh C T, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis [J]. Nature Catalysis, 2019, 3(2): 98-106. |
49 | Luo M, Wang Z, Li Y C, et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen [J]. Nature Communications, 2019, 10(1): 5814. |
50 | Tao H C, Gao Y N, Talreja N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion [J]. Journal of Materials Chemistry A, 2017, 5(16): 7257-7284. |
51 | Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature, 2009, 458(7239): 746-749. |
52 | Gao S, Jiao X C, Sun Z T, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate [J]. Angewandte Chemie International Edition, 2016, 55(2): 698-702. |
53 | Liu G, Yu J C, Lu G Q, et al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties [J]. Chemical Communications, 2011, 47(24): 6763-6783. |
54 | Zhu S Y, Liang S J, Wang Y, et al. Ultrathin nanosheets of molecular sieve SAPO-5: a new photocatalyst for efficient photocatalytic reduction of CO2 with H2O to methane [J]. Applied Catalysis B: Environmental, 2016, 187: 11-8. |
55 | Chen F, Huang H W, Ye L Q, et al. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction [J]. Advanced Functional Materials, 2018, 28(46): 1804284. |
56 | Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J]. Nature, 2016, 529(7584): 68-71. |
57 | Yoshio H, Katsuhei K, Shin S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogen carbonate solution [J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
58 | Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media [J]. Electrochimica Acta, 1994, 39(11): 1833-1839. |
59 | Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate [J]. Nature Communications, 2018, 9(1): 1320. |
60 | Liu W B, Li X K, Wang C M, et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction [J]. Journal of the American Chemical Society, 2019, 141(43): 17431-17440. |
73 | Sun J B, Giorgi G, Palummo M, et al. A scalable method for thickness and lateral engineering of 2D materials [J]. ACS Nano, 2020, 14(4): 4861-4870. |
74 | Sun Y F, Gao S, Lei F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis [J]. Chemical Society Reviews, 2015, 44(3): 623-636. |
75 | Niu K Y, Xu Y, Wang H C. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production [J]. Science Advances, 2017, 3(7): e1700921. |
76 | Bai S, Zhang N, Gao C, et al. Defect engineering in photocatalytic materials [J]. Nano Energy, 2018, 53: 296-336. |
77 | Zhao Y F, Zhao Y X, Waterhouse G I N, et al. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation [J]. Advanced Materials, 2017, 29(42): 1703828. |
78 | Tan L, Xu S M, Wang Z L, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under iIrradiation above 600 nm [J]. Angewandte Chemie International Edition, 2019, 58(34): 11860-11867. |
79 | Bai S, Wang Z L, Tan L, et al. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5848-5857. |
80 | Xiong X Y, Zhao Y F, Shi R, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals [J]. Science Bulletin, 2020, 65(12): 987-994. |
81 | Wang Z L, Xu S M, Tan L, et al. 600 nm-driven photoreduction of CO2 through the topological transformation of layered double hydroxides nanosheets [J]. Applied Catalysis B: Environmental, 2020, 270: 118884. |
82 | Xie Q X, Cai Z, Li P S, et al. Layered double hydroxides with atomic-scale defects for superior electrocatalysis [J]. Nano Research, 2018, 11(9): 4524-4534. |
83 | Huang L L, Chen R, Xie C, et al. Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation [J]. Nanoscale, 2018, 10(28): 13638-13644. |
84 | Hinuma Y, Toyao T, Kamachi T, et al. Density functional theory calculations of oxygen vacancy formation and subsequent molecular adsorption on oxide surfaces [J]. The Journal of Physical Chemistry C, 2018, 122(51): 29435-29444. |
85 | Gao S, Gu B C, Jiao X C, et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers [J]. Journal of the American Chemical Society, 2017, 139(9): 3438-3445. |
86 | He J Y, Zou Y Q, Wang S Y. Defect engineering on electrocatalysts for gas-evolving reactions [J]. Dalton Transactions, 2019, 48(1): 15-20. |
87 | Ji M X, Chen R, Di J, et al. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity [J]. Journal of Colloid and Interface Science, 2019, 533: 612-620. |
88 | Wang M, Shen M, Jin X X, et al. Mild generation of surface oxygen vacancies on CeO2 for improved CO2 photoreduction activity [J]. Nanoscale, 2020, 12(23): 12374-12382. |
89 | Chen S C, Wang H, Kang Z X, et al. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals [J]. Nature Communications, 2019, 10(1): 788. |
90 | Yang X L, Wang S Y, Yang N, et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4 [J]. Applied Catalysis B: Environmental, 2019, 259: 118088. |
91 | Kumar B, Llorente M, Froehlich J, et al. Photochemical and photoelectrochemical reduction of CO2 [J]. Annual Review of Physical Chemistry, 2012, 63(1): 541-569. |
92 | Hoch L B, Wood T E, O'Brien P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light [J]. Advanced Science, 2014, 1(1): 1400013. |
93 | Hoch L B, He L, Qiao Q, et al. Effect of precursor selection on the photocatalytic performance of indium oxide nanomaterials for gas-phase CO2 reduction [J]. Chemistry of Materials, 2016, 28(12): 4160-4168. |
94 | Qi Y H, Song L Z, Ouyang S X, et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies [J]. Advanced Materials, 2020, 32(6): e1903915. |
95 | Yang X X, Deng P L, Liu D Y, et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction [J]. Journal of Materials Chemistry A, 2020, 8(5): 2472-2480. |
96 | Li X D, Sun Y F, Xu J Q, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers [J]. Nature Energy, 2019, 4(8): 690-699. |
97 | Jones A M, Yu H Y, Ghimire N J, et al. Optical generation of excitonic valley coherence in monolayer WSe2 [J]. Nature Nanotechnology, 2013, 8(9): 634-638. |
98 | Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2via chemical doping [J]. Nano Letters, 2013, 13(12): 5944-5948. |
99 | Gao S Y, Liang Y F, Spataru C D, et al. Dynamical excitonic effects in doped two-dimensional semiconductors [J]. Nano Letters, 2016, 16(9): 5568-5573. |
100 | Liu M, Qiu X Q, Miyauchi M, et al. Energy-level matching of Fe(Ⅲ) Ions grafted at surface and doped in bulk for efficient visible-light photocatalysts [J]. Journal of the American Chemical Society, 2013, 135(27): 10064-10072. |
101 | Fei H L, Dong J C, Arellano-Jiménez M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation [J]. Nature Communications, 2015, 6(1): 8668. |
102 | Xiong Q Z, Wang Y, Liu P F, et al. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting [J]. Advanced Materials, 2018, 30(29): 1801450. |
103 | Zhang S, Zhao Y X, Shi R, et al. Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets [J]. Advanced Energy Materials, 2020, 10(8): 1901973. |
104 | Zhao Y F, Zhao B, Liu J J, et al. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light [J]. Angewandte Chemie International Edition, 2016, 55(13): 4215-4219. |
105 | Mohapatra L, Parida K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts [J]. Journal of Materials Chemistry A, 2016, 4(28): 10744-10766. |
106 | Hao X J, Tan L, Xu Y Q, et al. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500 nm [J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 3008-3015. |
107 | Li Y G, Hao J C, Song H, et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation [J]. Nature Communications, 2019, 10(1): 2359. |
108 | Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis [J]. Chemical Society Reviews, 2019, 48(2): 463-487. |
109 | Chen L N, Wang X W, Chen Y W, et al. Recycling heavy metals from wastewater for photocatalytic CO2 reduction [J]. Chemical Engineering Journal, 2020, 402: 125922. |
110 | Dong H, Zhang L, Li L L, et al. Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance [J]. Small, 2019, 15(17): 1900289. |
111 | Wu Y S, Yuan X L, Tao Z X, et al. Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal-oxide interactions [J]. Chemical Communications, 2019, 55(60): 8864-8867. |
112 | Wei Y J, Liu J, Cheng F Y, et al. Mn-doped atomic SnO2 layers for highly efficient CO2 electrochemical reduction [J]. Journal of Materials Chemistry A, 2019, 7(34): 19651-19656. |
113 | Fu J W, Yu J G, Jiang C J, et al. g-C3N4-based heterostructured photocatalysts [J]. Advanced Energy Materials, 2018, 8(3): 1701503. |
114 | Yang Y, Tang Z, Zhou B J, et al. In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: an absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO [J]. Applied Catalysis B: Environmental, 2020, 264: 118470. |
115 | Zu X L, Li X D, Liu W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn(delta) (+) sites [J]. Advanced Materials, 2019, 31(15): e1808135. |
116 | Huang P C, Cheng M, Zhang H H, et al. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene [J]. Nano Energy, 2019, 61: 428-434. |
117 | Su Q, Li Y, Hu R, et al. Heterojunction photocatalysts based on 2D materials: the role of configuration [J]. Advanced Sustainable Systems, 2020, 4(9): 2000130. |
118 | Wu S q, Tan X j, Lei J Y, et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane [J]. Journal of the American Chemical Society, 2019, 141(16): 6592-6600. |
119 | Wang X, Wang Z L, Bai Y, et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm [J]. Journal of Energy Chemistry, 2020, 46: 1-7. |
120 | Tonda S, Kumar S, Bhardwaj M, et al. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels [J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2667-2678. |
121 | Qiu C H, Hao X J, Tan L, et al. 500 nm induced tunable syngas synthesis from CO2 photoreduction by controlling heterojunction concentration [J]. Chemical Communications, 2020, 56(40): 5354-5357. |
122 | Qiu C H, Bai S, Cao W J, et al. Tunable syngas synthesis from photocatalytic CO2 reduction under visible-light irradiation by interfacial engineering [J]. Transactions of Tianjin University, 2020, 26(5): 352-361. |
123 | Hansen H A, Varley J B, Peterson A A, et al. Understanding trends in the electrocatalytic activity of metals and Enzymes for CO2 reduction to CO [J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
124 | Hansen H A, Shi C, Lausche A C, et al. Bifunctional alloys for the electroreduction of CO2 and CO [J]. Physical Chemistry Chemical Physics, 2016, 18(13): 9194-9201. |
125 | Liu N S, Zhao Y Y, Zhou S, et al. CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype [J]. Journal of Materials Chemistry A, 2020, 8(11): 5688-5698. |
126 | Zhou L, Xu Y F, Chen B X, et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals [J]. Small, 2018, 14(11): 1703762. |
127 | Ghosh S, Manna L. The many "facets" of halide ions in the chemistry of colloidal inorganic nanocrystals [J]. Chemical Reviews, 2018, 118(16): 7804-7864. |
128 | Zhang Z, Fang W H, Long R, et al. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: key roles of unsaturated halide bonds and thermal disorder [J]. Journal of the American Chemical Society, 2019, 141(39): 15557-15566. |
129 | Qiao L, Fang W H, Long R, et al. Extending carrier lifetimes in lead halide perovskites with alkali metals by passivating and eliminating halide interstitial defects [J]. Angewandte Chemie International Edition, 2020, 59(12): 4684-4690. |
130 | Gao C, Wang J, Xu H X, et al. Coordination chemistry in the design of heterogeneous photocatalysts [J]. Chemical Society Reviews, 2017, 46(10): 2799-2823. |
131 | Wang J C, Wang J, Li N Y, et al. Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction [J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31477-31485. |
132 | Wang X D, He J, Li J Y, et al. Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction [J]. Applied Catalysis B: Environmental, 2020, 277: 119230. |
133 | Li F W, Zhao S F, Chen L, et al. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide [J]. Energy & Environmental Science, 2016, 9(1): 216-223. |
134 | Li F W, Chen L, Xue M Q, et al. Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets [J]. Nano Energy, 2017, 31: 270-277. |
135 | Wang X, Lv J, Zhang J X, et al. Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction [J]. Nanoscale, 2020, 12(2): 772-784. |
136 | Li A, Wang T, Li C C, et al. Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to Methanol [J]. Angewandte Chemie International Edition, 2019, 58(12): 3804-3808. |
137 | Xu F Y, Meng K, Zhu B C, et al. Graphdiyne: a new photocatalytic CO2 reduction cocatalyst [J]. Advanced Functional Materials, 2019, 29(43): 1904256. |
[1] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[11] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||