化工学报 ›› 2021, Vol. 72 ›› Issue (1): 425-439.DOI: 10.11949/0438-1157.20201189
收稿日期:
2020-08-20
修回日期:
2020-09-19
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
王铁峰
作者简介:
魏然(1996—),男,硕士研究生,基金资助:
WEI Ran(),ZHENG Yanyan,LIU Fang,WANG Tiefeng()
Received:
2020-08-20
Revised:
2020-09-19
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Tiefeng
摘要:
聚甲氧基二甲醚(PODEn)具有十六烷值高、含氧量高、挥发性好、无硫及芳香烃等特点,被认为是最具应用前景的柴油调和组分。在柴油或宽馏分油中以合适比例掺混PODEn,能够提高内燃机热效率,降低发动机污染物排放,对改善环境污染及节约能源具有重要意义。PODEn以甲醇及其衍生物为原料,契合我国资源特点且利于优化能源结构调整,是我国新型煤化工发展的重要方向。近几年,PODEn合成及应用得到广泛研究,本文详细介绍了PODEn的特性及应用情况,总结了国内外合成PODEn的常见反应体系及特点,详细分析了PODEn合成反应动力学、机理及聚合产物分布等研究情况,同时介绍了现阶段我国PODEn的产业化情况,为PODEn的进一步研究发展提供指导。
中图分类号:
魏然, 郑妍妍, 刘昉, 王铁峰. 聚甲氧基二甲醚研究及应用进展[J]. 化工学报, 2021, 72(1): 425-439.
WEI Ran, ZHENG Yanyan, LIU Fang, WANG Tiefeng. Progress in academic and application researches on polyoxymethylene dimethyl ethers[J]. CIESC Journal, 2021, 72(1): 425-439.
1 | 龚琴红. 交通运输对大气环境的影响及节能减排分析研究[J]. 交通节能与环保, 2014, 10(2): 73-75, 60. |
Gong Q H. Research into the effect on atmospheric environment and emission reduction of transportation[J]. Transport Energy Conservation & Environmental Protection, 2014, 10(2): 73-75, 60. | |
2 | Kalghatgi G T. The outlook for fuels for internal combustion engines[J]. International Journal of Engine Research, 2014, 15(4): 383-398. |
3 | Liotta F J, Montalvo D M. The effect of oxygenated fuels on emissions from a modern heavy-duty diesel engine[R]. SAETechnical Paper 932734, 1993. |
4 | Miyamoto N, Ogawa H, Arima T, et al. Improvement various oxygenated agents to diesel fuels[R]. SAETechnical Paper 962115, 1996. |
5 | Miyamoto N, Ogawa H, Nurun M, et al. Smokeless, NOxlow, high thermal efficiency, and low noise diesel combustion with oxygenated agents as main fuel[R]. SAETechnical Paper 980506, 1998. |
6 | Nabi M N, Minami M, Ogawa H, et al. Ultra low emission and high performance diesel combustion with highly oxygenated fuel[R]. SAETechnical Paper 2000-01-0231, 2000. |
7 | Hallgren B E, Heywood J B. Effects of oxygenated fuels on DI diesel combustion and emissions[R]. SAETechnical Paper 2001-01-0648, 2001. |
8 | Mueller C J, Martin G C. Effects of oxygenated compounds on combustion and soot evolution in a DI diesel engine: broadband natural luminosity imaging[R]. SAETechnical Paper 2002-01-1631, 2002. |
9 | Wang J X, Wu F J, Xiao J H, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions[J]. Fuel, 2009, 88(10): 2037–2045. |
10 | Härtl M, Seidenspinner P, Jacob E, et al. Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1[J]. Fuel, 2015, 153: 328–335. |
11 | 邓小丹, 韩冬云, 李秀萍, 等. 聚甲氧基二甲醚对柴油性质的影响[J]. 当代化工, 2013, 42(11): 1508-1510, 1515. |
Deng X D, Han D Y, Li X P, et al. Study on the effect of adding polyoxymethylene dimethyl ethers on properties of diesel fuel[J]. Contemporary Chemical Industry, 2013, 42(11): 1508-1510, 1515. | |
12 | Qi J G, Hu Y F, Niu J G, et al. Evaluation of polyoxymethylene dimethyl ethers as a new type of diesel additives[J]. Fuel, 2018, 234: 135-141. |
13 | Lumpp B, Rothe D, Pastötter C, et al. Oxymethylene ethers as diesel fuel additives of the future[J]. MTZ World, 2011, 72(3): 34–38. |
14 | Pellegrini L, Marchionna M, Patrini R, et al. Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine[R]. SAETechnical Paper 2012-01-1053, 2012. |
15 | Pellegrini L, Marchionna M, Patrini R, et al. Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car[R]. SAETechnical Paper 2013-01-1035, 2013. |
16 | Chen H, He J J, Hua H N. Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel/biodiesel/polyoxymethylene dimethyl ethers blends[J]. Energy & Fuels, 2017, 31(11): 11710-11722. |
17 | Liu J L, Wang H, Li Y, et al. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177: 206-216. |
18 | Wang J X, Wu F J, Xiao J H, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions[J]. Fuel, 2009, 88(10): 2037-2045. |
19 | Wang D, Zhu G L, Li Z, et al. Conceptual design of production of eco-friendly polyoxymethylene dimethyl ethers catalyzed by acid functionalized ionic liquids[J]. Chemical Engineering Science, 2019, 206: 10-21. |
20 | 谢萌, 马志杰, 王全红, 等. 聚甲氧基二甲醚及其高比例掺混柴油混合燃料发动机燃烧与排放的试验研究[J]. 西安交通大学学报, 2017, 51(3): 32-37, 140 |
Xie M, Ma Z J, Wang Q H, et al. Investigation of engine combustion and emission performance fueled with neat PODE and PODE/diesel blend[J]. Journal of Xi'an Jiaotong University, 2017, 51(3): 32-37, 140. | |
21 | 冯浩杰, 孙平, 刘军恒, 等. 聚甲氧基二甲醚-柴油混合燃料对柴油机燃烧与排放的影响[J]. 石油学报(石油加工), 2016, 32(4): 816-822. |
Feng H J, Sun P, Liu J H, et al. Effect of PODE3-8-diesel blended fuel on combustion and emissions of diesel engine[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(4): 816-822. | |
22 | 刘军恒, 孙平, 刘源, 等. PODE掺混比对高压共轨柴油机颗粒物物理特性的影响[J]. 西安交通大学学报, 2017, 51(12): 104-111 |
Liu J H, Sun P, Liu Y, et al. Effects of PODE blending ratio on the physical characteristics of particulate matters for high-pressure common-rail diesel engines[J]. Journal of Xi'an Jiaotong University, 2017, 51(12): 104-111. | |
23 | Liu J H, Sun P, Huang H, et al. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends[J]. Applied Energy, 2017, 202: 527-536. |
24 | Liu H Y, Wang Z, Wang J X. Performance, combustion and emission characteristics of polyoxymethylene dimethyl ethers (PODE3-4)/ wide distillation fuel (WDF) blends in premixed low temperature combustion (LTC) [J]. SAE International Journal of Fuels and Lubricants, 2015, 8(2): 298-306. |
25 | Liu H Y, Wang Z, Wang J X, et al. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends[J]. Energy, 2016, 97: 105-112. |
26 | Liu H Y, Wang Z, Li B W, et al. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP) [J]. Fuel, 2016, 186: 639-647. |
27 | Barro C, Parravicini M, Boulouchos K. Neat polyoxymethylene dimethyl ether in a diesel engine(Part 1): Detailed combustion analysis[J]. Fuel, 2019, 256: 115892. |
28 |
Gao W Y, Liu J H, Sun P, et al. Numerical simulation on NO and soot formation process of a diesel engine with polyoxymethylene dimethyl ethers-diesel blend fuel[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, doi: 10.1080/15567036.2020.1726530.
DOI |
29 | Lu X C, Han D, Huang Z. Fuel design and management for the control of advanced compression-ignition combustion modes[J]. Progress in Energy and Combustion Science, 2011, 37(6): 741-783. |
30 | Sahoo B B, Sahoo N, Saha U K. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—a critical review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1151-1184. |
31 | Liu H Y, Wang Z, Li Y F, et al. Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers[J]. Applied Energy, 2019, 233: 599-611. |
32 | Boyd R H. Some physical properties of polyoxymethylene dimethyl ethers[J]. Journal of Polymer Science, 1961, 50(153): 133-141. |
33 | Kang M R, Song H Y, Jin F X, et al. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 837-845. |
34 | Patrini R, Marchionna M. Liquid mixture consisting of diesel gas oils and oxygenated compounds: US10/373781[P]. 2003-02-27. |
35 | Lautenschutz L, Oestreich D, Seidenspinner P, et al. Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers[J]. Fuel, 2016, 173: 129-137. |
36 | Kajitani S, Chen Z L, Konno M, et al. Engine performance and exhaust characteristics of direct-injection diesel engine operated with DME[R]. SAETechnical Paper 972973, 1997. |
37 | Wang Y, Zhou L B, Wang H W. Diesel emission improvements by the use of oxygenated DME/diesel blend fuels[J]. Atmospheric Environment, 2006, 40(13): 2313-2320. |
38 | 黄瑾, 魏衍举, 汪文瑞, 等. 发动机燃用柴油和二甲醚时颗粒排放对比研究[J]. 内燃机工程, 2014, 35(4): 13-17, 24. |
Huang J, Wei Y J, Wang W R, et al. Comparison of PM emissions of engine fueled with DME and diesel fuels[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 13-17, 24. | |
39 | 李跟宝, 宋清双, 周龙保, 等. 二甲醚与柴油互溶性实验研究[J]. 内燃机学报, 2006, 24(2): 122-126. |
Li G B, Song Q S, Zhou L B, et al. Experimental study on intersolubility of dimethyl ether and diesel fuel[J]. Transactions of CSICE, 2006, 24(2): 122-126. | |
40 | Zheng Y Y, Tang Q, Wang T F, et al. Synthesis of a green fuel additive over cation resins[J]. Chemical Engineering & Technology, 2013, 36(11): 1951-1956. |
41 | Bogatykh I, Osterland T, Stein H, et al. Investigation of the oxidative degradation of the synthetic fuel oxymethylene dimethyl ether[J]. Energy & Fuels, 2020, 34(3): 3357-3366. |
42 | Chen H, Su X, Li J H, et al. Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine[J]. Energy, 2019, 171: 981-999. |
43 | Liu H Y, Wang Z, Wang J X, et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends[J]. Energy, 2015, 88: 793-800. |
44 | Liu H Y, Wang Z, Zhang J, et al. Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines[J]. Applied Energy, 2017, 185: 1393-1402. |
45 | 颜曦明, 王宝宇, 晁会霞. 聚甲氧基二甲醚合成反应机理及动力学研究进展[J]. 石油学报(石油加工), 2019, 35(1): 207-216. |
Yan X M, Wang B Y, Chao H X. Progress of reaction mechanisms and kinetics of polyoxymethylene dimethyl ethers synthesis[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(1): 207-216. | |
46 | Zhao Y P, Xu Z, Chen H, et al. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. Journal of Energy Chemistry, 2013, 22(6): 833-836. |
47 | Liu F, Wang T F, Zheng Y Y, et al. Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42-/TiO2 catalysts[J]. Journal of Catalysis, 2017, 355: 17-25. |
48 | Liu Y, Wang Y, Cai W F, et al. A synthesis, process optimization, and mechanism investigation for the formation of polyoxymethylene dimethyl ethers[J]. Transactions of Tianjin University, 2019, 25: 1-8. |
49 | Burger J, Siegert M, Ströfer E, et al. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11): 3315-3319. |
50 | Li H J, Song H L, Zhao F, et al. Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania[J]. Journal of Energy Chemistry, 2015, 24(2): 239-244. |
51 | Wu J B, Zhu H Q, Wu Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. |
52 | Fu W H, Liang X M, Zhang H D, et al. Shape selectivity extending to ordered supermicroporous aluminosilicates[J]. Chemical Communications, 2015, 51(8): 1449-1452. |
53 | Xue Z Z, Shang H Y, Zhang Z L, et al. Efficient synthesis of polyoxymethylene dimethyl ethers on Al-SBA-15 catalysts with different Si/Al ratios and pore sizes[J]. Energy & Fuels, 2017, 31: 279-286. |
54 | Yang Z Y, Hu Y F, Ma W T, et al. Synthesis of polyoxymethylene dimethyl ethers catalyzed by pyrrolidinonium-based ionic liquids[J]. Chemical Engineering & Technology, 2017, 40(10): 1784-1791. |
55 | Song H Y, Li R Y, Jin F X, et al. Efficient and reusable zeolite-immobilized acidic ionic liquids for the synthesis of polyoxymethylene dimethyl ethers[J]. Molecular Catalysis, 2018, 455: 179-187. |
56 | Li H J, Li Y X, Guo T, et al. The green and expeditious synthesis of sulfated titania with enhanced catalytic activity in polyoxymethylene dimethyl ethers synthesis[J]. Reac. Kinet. Mech. Cat., 2018, 124: 139-151. |
57 | Wang R Y, Wu Z W, Li Z K, et al. Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: probing the active species and relating the catalyst structure to performance[J]. Appl. Catal. A, 2019, 570: 15-22. |
58 | Baranowski C J, Bahmanpour A M, Heroguel F, et al. Insights into the nature of the active sites of tin-montmorillonite for the synthesis of polyoxymethylene dimethyl ethers (OME)[J]. ChemCatChem, 2019, 11: 3010-3021. |
59 | Qi J G, Hu Y F, Jiang S Q, et al. Lewis acids promote the catalytic selectivity to polyoxymethylene dimethyl ethers PODE3, 4[J]. Fuel, 2019, 245: 521-527. |
60 | Song H Y, Jin F X, Kang M R, et al. Novel polymeric acidic ionic liquids as green catalysts for the preparation of polyoxymethylene dimethyl ethers from the acetalation of methylal with trioxane[J]. RSC Advances, 2019, 9: 40662-40669. |
61 | Zhao Q, Wang H, Qin Z F, et al. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 918-923. |
62 | Fang X, Chen J, Ye L, et al. Efficient synthesis of poly(oxymethylene) dimethyl ethers over PVP-stabilized heteropolyacids through self-assembly[J]. Sci. China: Chem., 2015, 58: 131-138. |
63 | Li H J, Song H L, Chen L W, et al. Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis: the acid sites control and reaction pathways[J]. Applied Catalysis B: Environmental, 2015, 165: 466-476. |
64 | 施敏浩, 刘殿华, 赵光, 等. 甲醇和甲醛催化合成聚甲氧基二甲醚[J]. 化工学报, 2013, 64(3): 931-935. |
Shi M H, Liu D H, Zhao G, et al. Catalytic synthesis of polyoxymethylene dimethyl ethers from methanol and formaldehyde[J]. CIESC Journal, 2013, 64(3): 931-935. | |
65 | Zhang J Q, Fang D Y, Liu D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: performance tests and kinetic investigations[J]. Industrial & Engineering Chemistry Research, 2014, 53: 13589-13597. |
66 | Schmitz N, Homberg F, Berje J, et al. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54: 6409-6417. |
67 | Burger J, Ströfer E, Hasse H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12751-12761. |
68 | 刘昉. 聚甲氧基二甲醚合成催化剂设计和催化工艺研究[D]. 北京: 清华大学, 2019. |
Liu F. Catalyst design and catalytical process investigation for synthesis of polyoxymethylene dimethyl ethers[D]. Beijing: Tsinghua University, 2019. | |
69 | Zheng Y Y, Tang Q, Wang T F, et al. Molecular size distribution in synthesis of polyoxymethylene dimethyl ethers and process optimization using response surface methodology[J]. Chemical Engineering Journal, 2015, 278: 183-189. |
70 | Li X J, Tian H Y, Liu D H. Liquid-liquid equilibrium for ternary systems of polyoxymethylene dimethyl ethers plus o‑xylene + water at 293.15 K[J]. Journal of Chemical and Engineering Data, 2019, 64(6): 2266-2272. |
71 | Liu Y, Wang Y, Cai W F. Salting effect of sodium hydroxide and sodium formate on the liquid-liquid equilibrium of polyoxymethylene dimethyl ethers in aqueous solution[J]. Journal of Chemical and Engineering Data, 2019, 64(6): 2578-2592. |
72 | Arvidson M, Fakley M E, Spencer M S. Lithium halide-assisted formation of polyoxymethylene dimethyl ethers from dimethoxymethane and formaldehyde[J]. Journal of Molecular Catalysis, 1987, 41(3): 391-393. |
73 | Wang F, Zhu G L, Li Z, et al. Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2015, 408: 228-236. |
74 | Zhang J Q, Shi M H, Fang D Y, et al. Reaction kinetics of the production of polyoxymethylene dimethyl ethers from methanol and formaldehyde with acid cation exchange resin catalyst[J]. Reac. Kinet. Mech. Cat., 2014, 113: 459-470. |
75 | Schmitz N, Burger J, Hasse H. Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54: 12553-12560. |
76 | Zheng Y Y, Tang Q, Wang T F, et al. Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin[J]. Chemical Engineering Science, 2015, 134: 758-766. |
77 | Liu F, Wei R, Wang T F. Identification of the rate-determining step for the synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane[J]. Fuel Processing Technology, 2018, 180: 114-121. |
78 | Willian F, Richard E. Preparation of polyformals: US2449469[P]. 1948-09-14. |
79 | 王佳臻, 韩艳辉, 胡慧敏, 等. 我国聚甲氧基二甲醚技术现状和产业化进展[J]. 现代化工, 2017, 37(8): 15-18. |
Wang J Z, Han Y H, Hu H M, et al. China's status and industrialization progress of polyoxymethylene dimethyl ethers technology[J]. Modern Chemical Industry, 2017, 37(8): 15-18. | |
80 | 史高峰, 陈英赞, 陈学福, 等. 聚甲氧基二甲醚研究进展[J]. 天然气化工, 2012, 37(2): 74-78. |
Shi G F, Chen Y Z, Chen X F, et al. Research progress in polyoxymethylene dimethyl ethers[J]. Natural Gas Chemical Industry, 2012, 37(2): 74-78. | |
81 | 钟子太, 刘红. 聚甲氧基二甲醚工艺技术[J]. 氮肥技术, 2016, 37(6): 38-41. |
Zhong Z T, Liu H. Polyoxymethylene dimethyl ethers process technology[J]. Nitrogenous Fertilizer Technology, 2012, 37(2): 74-78. | |
82 | 张信伟, 李杰, 倪向前, 等. 聚甲氧基二甲醚合成技术的产业化进展[J]. 化工进展, 2016, 35(7): 2293-2298. |
Zhang X W, Li J, Ni X Q, et al. Development of the synthesis technology of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2293-2298. | |
83 | 郑妍妍, 唐强, 王铁峰, 等. 聚甲氧基二甲醚的研究进展及前景[J]. 化工进展, 2016, 35(8): 2412-2419. |
Zheng Y Y, Tang Q, Wang T F, et al. Progress and prospect of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2412-2419. | |
84 | 王云芳, 陈建国, 邢金仙, 等. 一种聚甲氧基二甲醚的生产装置系统及生产工艺: 103848730[P]. 2014-06-11. |
Wang Y F, Chen J G, Xing J X, et al. Production device system and process of polyoxymethylene dimethyl ethers: 103848730[P]. 2014-06-11. | |
85 | 王云芳, 陈建国, 邢金仙, 等. 一种制备聚甲氧基二甲醚的组合工艺: 103360224[P]. 2013-10-23. |
Wang Y F, Chen J G, Xing J X, et al. A combined synthesis process of polyoxymethylene dimethyl ethers: 103360224[P]. 2013-10-23. | |
86 | 谢忠设, 张建民. 阻击雾霾, 化企攻坚PODE助柴油升级[N]. 中国化工报, 2015-01-13. |
Xie Z S, Zhang J M. Chemical enterprises focus on PODE production to upgrade diesel fuel and alleviate the smog[N]. China Chemical Industry News, 2015-01-13. | |
87 | 国内聚甲氧基二甲醚(DMMn)系列技术介绍[J]. 煤炭加工与综合利用, 2015, (10): 12-15, 63. |
Introduction to domestic technologies of polyoxymethylene dimethyl ethers (DMMn) synthesis[J]. Coal Processing & Comprehensive Utilization, 2015, (10): 12-15, 63. | |
88 | 李燊, 袁梦, 张燕鹏, 等. 聚甲氧基二甲醚合成工艺现状分析[J]. 应用化工, 2020, 49(4): 951-957. |
Li S, Yuan M, Zhang Y P, et al. Analysis of current status synthesis of polyoxymethylene dimethyl ethers[J]. Applied Chemical Industry, 2020, 49(4): 951-957. | |
89 | 耿雪丽, 孟莹, 从海峰, 等. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
Geng X L, Meng Y, Cong H F, et al. A review on synthesis and industrialization of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4993-5008. | |
90 | 杨亮, 徐宁霞. 新型柴油改良剂DMMn发展前景分析[J]. 化学工程, 2016, 44(9): 75-78. |
Yang L, Xu N X. New type of diesel conditioner DMMn prospect analysis[J]. Chemical Engineering(China), 2016, 44(9): 75-78. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||