化工学报 ›› 2021, Vol. 72 ›› Issue (1): 589-596.DOI: 10.11949/0438-1157.20200962

• 能源和环境工程 • 上一篇    下一篇

聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究

张劲1(),郭志斌2,张巨佳1,王海宁1,相艳1,蒋三平3,卢善富1()   

  1. 1.仿生能源材料与器件北京市重点实验室,北京航空航天大学空间与环境学院,北京 100191
    2.北京海得利兹新技术有限公司,北京 100192
    3.澳大利亚科廷大学燃料与能源技术研究所,珀斯WA610 2,澳大利亚
  • 收稿日期:2020-07-20 修回日期:2020-09-28 出版日期:2021-01-05 发布日期:2021-01-05
  • 通讯作者: 卢善富
  • 作者简介:张劲(1987—),男,博士,讲师,zhangjin1@buaa.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB1502303);国家自然科学基金项目(21722601);中央高校基本科研业务费

Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack

ZHANG Jin1(),GUO Zhibin2,ZHANG Jujia1,WANG Haining1,XIANG Yan1,JIANG San Ping3,LU Shanfu1()   

  1. 1.Beijing Laboratory of Bio-inspired Materials and Devices, School of Space and Environment, Beihang University, Beijing 100191, China
    2.Beijing Heracles Novel Technology Co. , Ltd. , Beijing 100192, China
    3.Fuels and Energy Technology Institute, Curtin University, Perth WA 6102, Australia
  • Received:2020-07-20 Revised:2020-09-28 Online:2021-01-05 Published:2021-01-05
  • Contact: LU Shanfu

摘要:

基于磷酸掺杂聚苯并咪唑膜(PA/PBI)的高温聚合物电解质膜燃料电池具有高的输出功率和优异的稳定性,然而PBI膜昂贵的价格和复杂的制备工艺限制了高温聚合物电解质膜燃料电池的商业化应用。本研究以成本低和制备工艺简单的聚醚砜-聚乙烯吡咯烷酮(PES-PVP)膜的商业化应用为目标,小规模制备了幅宽为40 cm的PES-PVP复合膜,证实了流延法放大制备PES-PVP复合膜的可行性。PES-PVP膜中每个PVP重复单元的吸附量达4.9个磷酸(PA)分子,且在180℃的质子电导率达85 mS·cm-1。此外,尺寸为165 cm2的PA/PES-PVP高温膜电极在150℃的输出功率达0.19 W·cm-2@0.6 V,与同尺寸的商业化PA/PBI高温膜电极的输出功率相当,并在近3000 h的寿命测试中展示出良好的稳定性。最后,将PA/PES-PVP高温膜电极(单片有效面积200 cm2)组装高温膜燃料电池短堆,其中基于3片膜电极的短堆展现出良好的电堆启停稳定性;基于20片膜电极电堆的峰值功率达1.15 kW。以上结果表明所制备的PA/PES-PVP是一种性能优良、价格便宜的高温聚合物电解质膜材料,并且基于该膜材料组装的高温聚合物电解质膜电池和电堆性能优异。本研究工作为高温聚合物电解质膜燃料电池关键材料和电堆的国产化提供了研究基础。

关键词: 高温聚合物电解质膜, 聚醚砜-聚乙烯吡咯烷酮, 电化学, 燃料电池, 稳定性

Abstract:

High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on phosphoric acid doped polybenzimidazole (PA/PBI) membrane express high stability and outstanding performance. However, the high price and complex fabrication procedures of PBI substantially hinder the commercial application of PBI in HT-PEMFCs. This study aims to accelerate the commercial application of polyether sulfone-polyvinyl pyrrolidone (PES-PVP) membrane in HT-PEMFCs. The achievement of PES-PVP membrane with width of 40 cm proves feasibility for scale-up production of the PES-PVP membrane. After PA doping, the membrane obtains PA uptake of 4.9 PA per repeat unit of PVP and the high proton conductivity of 85 mS·cm-1 at 180℃. In addition, the PA/PES-PVP membrane fuel cell with active area of 165 cm2 shows power output of 0.19 W·cm-2@0.6 V at 150℃ under H2/air atmosphere. That is comparative to the power output of commercial PA/PBI membrane fuel cells under the same test conditions. Furthermore, the fuel cell shows exceptional durability up to 3000 h under 150℃. In addition, the fuel cell stack containing 3 cells with active area of 200 cm2 shows outstanding stability during start-up/shut down cycles, while the fuel cell stack with 20 cells shows peak power output of 1.15 kW under the same test conditions. Overall, the PA/PES-PVP composite membranes with low cost show excellent performance in HT-PEMFCs, which have promising application for the commercialization of domestic HT-PEMFCs. This research work provides a research foundation for the localization of key materials and stacks for high-temperature polymer electrolyte membrane fuel cells.

Key words: high temperature polymer electrolyte membrane, PES-PVP, electrochemistry, fuel cells, stability

中图分类号: