化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5384-5395.DOI: 10.11949/0438-1157.20210480
郭枭1,2(),邱云峰1,史志国1,2,王亚辉1,2,宋力1,2,田瑞1,2()
收稿日期:
2021-04-08
修回日期:
2021-05-31
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
田瑞
作者简介:
郭枭(1987—),男,博士研究生,实验师,基金资助:
Xiao GUO1,2(),Yunfeng QIU1,Zhiguo SHI1,2,Yahui WANG1,2,Li SONG1,2,Rui TIAN1,2()
Received:
2021-04-08
Revised:
2021-05-31
Online:
2021-10-05
Published:
2021-10-05
Contact:
Rui TIAN
摘要:
研究了基于低温辐射散热的储热型太阳能供暖系统。分析了平板热管型太阳能集热器的集热特性和相变储热材料的吸/放热特性,揭示了相变储热单元温度场不均匀度的变化规律,测定了相变储热单元的热传输速率及系统的太阳能综合利用能力,优化了毛细管网运行条件,讨论了系统经济性。结果表明:平板热管型太阳能集热器热损系数为5.5447 W/(m2·K),截距效率为86%;相变储热材料熔点及相变焓分别为55.69℃、163.09 J/g;相变储热单元温度场不均匀度在储热/放热阶段的变化趋势基本一致,平均储热速率和放热速率分别为1.829、1.803 MJ/h;系统的太阳能综合利用能力为0.2132;毛细管网的最佳进口温度和散热温差分别为36、8℃;系统初投资和运维成本分别为225.8、4.28元/m2,静态投资回收期为8.7年。
中图分类号:
郭枭,邱云峰,史志国,王亚辉,宋力,田瑞. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395.
Xiao GUO,Yunfeng QIU,Zhiguo SHI,Yahui WANG,Li SONG,Rui TIAN. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395.
图1 测试原理图1—TP700数据采集器;2—K型点状测温传感器;3—三通阀-1;4—球阀-1;5—风速仪;6—风向标;7—环境温度传感器(室外);8—CR3000数据采集器;9—球阀-2;10—环境温度传感器(室内);11—毛细管网;12—倾斜面太阳总辐射表;13—平板热管型太阳能集热器;14—球阀-3;15—三通阀-2;16—球阀-4;17—球阀-5;18—缓冲水箱;19—球阀-6;20—玻璃浮子流量计;21—球阀-7;22—循环泵;23—Y型过滤器;24—球阀-8;25—相变储热单元
Fig.1 Test schematic diagram
名称 | 型号规格 |
---|---|
平板热管型太阳能集热器 | 100 L(2 m2) |
毛细管网 | U20(4 m2) |
循环泵 | 12 WZR-8 |
表1 关键部件的型号规格
Table 1 Type and specification of key unit
名称 | 型号规格 |
---|---|
平板热管型太阳能集热器 | 100 L(2 m2) |
毛细管网 | U20(4 m2) |
循环泵 | 12 WZR-8 |
名称 | 型号 | 量程/采样频率 | 精度/最小分度值 |
---|---|---|---|
一等标准水银温度计 | WLB | 0~75℃ | ±0.05℃ |
电子天平 | JA31002 | 0~3.1 kg | 0.01 g |
分析天平 | ES1035B | 0~31 g | 0.01 mg |
玻璃浮子流量计 | LZB-15 | 40~400 L/h | ±1.5% |
太阳总辐射表 | LI-200X | 0~2000 W/m2 | ±3% |
环境温度传感器 | CS215 | -40~70℃ | ±0.3℃ |
风速仪 | #40 | 0~60 m/s | ±2% |
风向标 | #200P | 0~360° | ±5° |
数据采集器 | TP700/CR3000 | 10 s/次 | ±0.2% |
温度传感器 | K型 | 0~150℃ | ±0.1℃ |
差示扫描量热仪 | DCS250 | -180~725℃ | ±1%/±0.01℃ |
表2 仪器及仪表的型号和主要技术参数
Table 2 Type and main technical parameters of instruments and meters
名称 | 型号 | 量程/采样频率 | 精度/最小分度值 |
---|---|---|---|
一等标准水银温度计 | WLB | 0~75℃ | ±0.05℃ |
电子天平 | JA31002 | 0~3.1 kg | 0.01 g |
分析天平 | ES1035B | 0~31 g | 0.01 mg |
玻璃浮子流量计 | LZB-15 | 40~400 L/h | ±1.5% |
太阳总辐射表 | LI-200X | 0~2000 W/m2 | ±3% |
环境温度传感器 | CS215 | -40~70℃ | ±0.3℃ |
风速仪 | #40 | 0~60 m/s | ±2% |
风向标 | #200P | 0~360° | ±5° |
数据采集器 | TP700/CR3000 | 10 s/次 | ±0.2% |
温度传感器 | K型 | 0~150℃ | ±0.1℃ |
差示扫描量热仪 | DCS250 | -180~725℃ | ±1%/±0.01℃ |
名称 | 型号规格 | 单价/元 | 数量 | 总价/元 |
---|---|---|---|---|
总计/元 | 17162 | |||
平板热管型太阳能集热器 | 2 m2 | 520 | 16 | 8320 |
相变储热单元 | 0.0651 m3 | 580 | 10 | 5800 |
毛细管网 | 4 m2 | 128 | 7 | 896 |
循环泵 | MP-100RM | 515 | 1 | 515 |
Y型过滤器 | 1寸 | 62 | 1 | 62 |
缓冲水箱 | 100 L | 300 | 1 | 300 |
球阀 | 1寸 | 12 | 8 | 96 |
电动三通阀 | DN32 | 375 | 2 | 750 |
智能温控器 | TC-05B | 255 | 1 | 255 |
预装PPR保温管 | 1寸 | 8.4 | 20 | 168 |
表3 材料
Table 3 Material schedule
名称 | 型号规格 | 单价/元 | 数量 | 总价/元 |
---|---|---|---|---|
总计/元 | 17162 | |||
平板热管型太阳能集热器 | 2 m2 | 520 | 16 | 8320 |
相变储热单元 | 0.0651 m3 | 580 | 10 | 5800 |
毛细管网 | 4 m2 | 128 | 7 | 896 |
循环泵 | MP-100RM | 515 | 1 | 515 |
Y型过滤器 | 1寸 | 62 | 1 | 62 |
缓冲水箱 | 100 L | 300 | 1 | 300 |
球阀 | 1寸 | 12 | 8 | 96 |
电动三通阀 | DN32 | 375 | 2 | 750 |
智能温控器 | TC-05B | 255 | 1 | 255 |
预装PPR保温管 | 1寸 | 8.4 | 20 | 168 |
1 | Mahmoud M, Ramadan M, Naher S, et al. The impacts of different heating systems on the environment: a review[J]. Science of the Total Environment, 2021, 766: 142625. |
2 | 姚华, 黄云, 徐敬英, 等. 我国北方地区清洁供暖技术现状与问题探讨[J]. 中国科学院院刊, 2020, 35(9): 1177-1188. |
Yao H, Huang Y, Xu J Y, et al. Technology status and discussion on challenges of clean heating in Northern China[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(9): 1177-1188. | |
3 | 李峥嵘, 徐尤锦, 黄俊鹏. 中国太阳能区域供热发展潜力[J]. 暖通空调, 2017, 47(9): 68-74. |
Li Z R, Xu Y J, Huang J P. Solar district heating potential in China[J]. Heating Ventilating &Air Conditioning, 2017, 47(9): 68-74. | |
4 | 孙炜钰, 朱琳, 杨金钢. 太阳能集热器研究近况与展望[J]. 绿色环保建材, 2019, (10): 24-25. |
Sun W Y, Zhu L, Yang J G. Recent situation and prospect of solar collector research[J]. Green Environmental Protection Building Materials, 2019, (10): 24-25. | |
5 | 车永毅. 平板型太阳能集热器关键参数变化对其集热效率影响的研究[D]. 兰州: 兰州理工大学, 2016. |
Che Y Y. Studies on the effects of the variation of key parameters of a flat-plate solar collector on its heat-collecting efficiency [D]. Lanzhou: Lanzhou University of Technology, 2016. | |
6 | 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009. |
Zhang R Y. Phase Change Materials and Phase Change Energy Storage Technology[M]. Beijing: Science Press, 2009. | |
7 | Qu S L, Han J Q, Sun Z F, et al. Study of operational strategies for a hybrid solar-geothermal heat pump system[J]. Building Simulation, 2019, 12(4): 697-710. |
8 | 范立群, 周利, 刘泳, 等. 储热材料研究进展[J]. 枣庄学院学报, 2018, 35(2): 101-109. |
Fan L Q, Zhou L, Liu Y, et al. Research progress of thermal storage materials[J]. Journal of Zaozhuang University, 2018, 35(2): 101-109. | |
9 | 梁立晓, 陈梦东, 段立强, 等. 储热技术在太阳能热发电及热电联产领域研究进展[J]. 热力发电, 2020, 49(3): 8-15. |
Liang L X, Chen M D, Duan L Q, et al. Research progress of thermal energy storage technology in solar thermal power generation and combined heat and power generation[J]. Thermal Power Generation, 2020, 49(3): 8-15. | |
10 | Mondal S. Phase change materials for smart textiles — an overeview[J]. Applied Thermal Engineering, 2008, 28(11/12): 1536- 1550. |
11 | 程海峰, 刘亚军, 王庚, 等. 低温热水供暖室内热环境监测及热舒适性评价[J]. 建筑热能通风空调, 2018, 37(6): 35-38. |
Cheng H F, Liu Y J, Wang G, et al. Indoor thermal environment monitoring and thermal comfort evaluation of low temperature hot water heating system[J]. Building Energy & Environment, 2018, 37(6): 35-38. | |
12 | 周斌, 谭洪卫, 王亮. 低温散热器采暖方式的舒适性研究[J]. 建筑节能, 2013, 41(4): 23-26. |
Zhou B, Tan H W, Wang L. Comfort of low temperature radiator heating system[J]. Building Energy Efficiency, 2013, 41(4): 23-26. | |
13 | 赵树兴, 杨俊兰, 王宇, 等. 太阳能利用及太阳能与风力发电联合供热系统[J]. 煤气与热力, 2007, 27(4): 79-81. |
Zhao S X, Yang J L, Wang Y, et al. Solar energy utilization and combined heat-supply system based on solar energy and wind power generation[J]. Gas & Heat, 2007, 27(4): 79-81. | |
14 | Qiu G D, Ma Y Y, Song W M, et al. Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating[J]. Renewable Energy, 2021, 169: 104-116. |
15 | Chen Y Z, Hua H L, Wang J, et al. Integrated performance analysis of a space heating system assisted by photovoltaic/thermal collectors and ground source heat pump for hotel and office building types[J]. Renewable Energy, 2021, 169: 925-934. |
16 | 李金平, 孔莹, 许哲, 等. 全玻璃真空管太阳能阵列供暖系统性能试验[J]. 农业工程学报, 2017, 33(11): 240-247. |
Li J P, Kong Y, Xu Z, et al. Experiment on performance of all-glass vacuum tube solar array heating system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 240-247. | |
17 | 苏文佳, 左然, 张志强, 等. 太阳能平板集热/储热系统[J]. 太阳能学报, 2008, 29(4): 449-453. |
Su W J, Zuo R, Zhang Z Q, et al. Flat-plate solar collector/storage system[J]. Acta Energiae Solaris Sinica, 2008, 29(4): 449-453. | |
18 | Ucar A, Oral A. Exergoeconomic optimization and experimental investigation of a solar heating system with thermal energy storage in Turkey[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(8): 916-931. |
19 | Mazman M, Cabeza L F, Mehling H, et al. Utilization of phase change materials in solar domestic hot water systems[J]. Renewable Energy, 2009, 34(6): 1639-1643. |
20 | Arkar C, Medved S. Optimization of latent heat storage in solar air heating system with vacuum tube air solar collector[J]. Solar Energy, 2015, 111: 10-20. |
21 | 詹凯. 太阳能热水系统关键设计参数研究[D]. 成都: 西南交通大学, 2015. |
Zhan K. Research on key design parameters of solar hot water system[D]. Chengdu: Southwest Jiaotong University, 2015. | |
22 | 焦浩, 王万江, 张叶, 等. 严寒地区太阳能相变蓄热地板辐射供暖系统运行控制策略实验研究[J]. 暖通空调, 2016, 46(2): 78-83, 110. |
Jiao H, Wang W J, Zhang Y, et al. Experiment research on control strategy of solar phase change thermal storage floor heating system in severe cold zone[J]. Heating Ventilating & Air Conditioning, 2016, 46(2): 78-83, 110. | |
23 | Raluy R G, Serra L M, Guadalfajara M, et al. Life cycle assessment of central solar heating plants with seasonal storage [J]. Energy Procedia, 2014, 48: 966-976. |
24 | 白剑. 相变蓄热在太阳能热泵供热系统中的应用研究[D]. 太原: 太原理工大学, 2012. |
Bai J. Study on application of phase change thermal in solar energy heat pump heating system[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
25 | 王昊. 采用新型相变材料蓄热槽蓄放热特性数值计算方法探讨[D]. 北京: 北京工业大学, 2003. |
Wang H. Discussion on numerical calculating method of heat storing & releasing characteristics of heat-storing bed using new kind of phase change material [D]. Beijing: Beijing University of Technology, 2003. | |
26 | 姜益强, 齐琦, 姚杨, 等. 圆柱形壳管式相变蓄热单元的蓄热特性研究[J]. 太阳能学报, 2008, 29(1): 29-34. |
Jiang Y Q, Qi Q, Yao Y, et al. Study on thermal storage performance of PCM-based cylinder shell-and-tube energy storage cell[J]. Acta Energiae Solaris Sinica, 2008, 29(1): 29-34. | |
27 | Nithyanandam K, Pitchumani R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes [J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4596-4610. |
28 | Beizaee A, Allinson D, Lomas K J, et al. Measuring the potential of zonal space heating controls to reduce energy use in UK homes: the case of un-furbished 1930s dwellings[J]. Energy and Buildings, 2015, 92: 29-44. |
29 | Mazarrón F R, Porras-Prieto C J, García J L, et al. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures[J]. Energy Conversion and Management, 2016, 113: 16-26. |
30 | 王立璞. 太阳能与生物质能互补的地板采暖系统中室内热环境研究[D]. 兰州: 兰州理工大学, 2007. |
Wang L P. Study on thermal environment of floor heating room heated by energy generated from solar energy and bioenergy[D]. Lanzhou: Lanzhou University of Technology, 2007. | |
31 | 鲁红光, 马禄彬. 太阳能低温地板辐射采暖系统设计分析[J]. 湖北农机化, 2019, (14): 86. |
Lu H G, Ma L B. Design and analysis of solar low temperature floor radiant heating system[J]. Hubei Agricultural Mechanization, 2019, (14): 86. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[6] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[12] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[13] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[14] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[15] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||