化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5552-5562.DOI: 10.11949/0438-1157.20210845
丁国栋1,2,3(),陈家庆1,3(),李振林2,蔡小垒1,3
收稿日期:
2021-06-23
修回日期:
2021-08-17
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
陈家庆
作者简介:
丁国栋(1991—),男,博士研究生,基金资助:
Guodong DING1,2,3(),Jiaqing CHEN1,3(),Zhenlin LI2,Xiaolei CAI1,3
Received:
2021-06-23
Revised:
2021-08-17
Online:
2021-11-05
Published:
2021-11-12
Contact:
Jiaqing CHEN
摘要:
尽管文丘里管式微气泡发生器的注气口位置会对气泡在文丘里流道内的碎化特征产生直接影响,但迄今缺乏针对性的深入研究。通过可视化实验方法,对比分析了注气口分别位于喉管处(结构1型)和进水管处(结构2型)时的气液流型、气泡破碎特征以及成泡特性。实验表明,气、液相流量对结构1型微气泡发生器内的气液流型影响显著,初始成泡区域随液相流量增加,环状流或泡状流向弹状流转变,而随气相流量增加则由泡状流或弹状流向环状流转变;结构2型微气泡发生器则在此过程中始终为泡状流,其对操作工况的适应范围大于结构1型。在相同工况下,结构1型微气泡发生器的成泡Sauter平均粒径小于结构2型,但随着液相Reynolds数的增大,二者间的成泡平均粒径差值随之减小。分析原因是由于弹状流流型下,延伸至扩张段区域的弹型泡的表面积更大,能量转化率更高,气泡界面失稳碎化的程度更显著。随着液相Reynolds数的增大,初始成泡体积减小,湍流破碎机理作用占据主导,掩盖了由于界面失稳引起的气泡破碎。结构1型微气泡发生器的成泡能耗高于结构2型,并且随液相Reynolds数的增大,两者之间的差值随之增大。综合来看,结构2型微气泡发生器能够在低能耗下实现高效成泡,面向工程应用将更具优势。
中图分类号:
丁国栋, 陈家庆, 李振林, 蔡小垒. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562.
Guodong DING, Jiaqing CHEN, Zhenlin LI, Xiaolei CAI. Analysis of the effect of air injection hole position on bubble formation characteristics of Venturi-type microbubble generator[J]. CIESC Journal, 2021, 72(11): 5552-5562.
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.963 | |
结构2型 | 1 |
表1 不同文丘里管式微气泡发生器的成泡平均粒径(d32)与液相Reynolds数(Reth)间的拟合关系式
Table 1 Correlations of the Sauter mean diameter with respect to Reth under different Venturi-type microbubble generator
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.963 | |
结构2型 | 1 |
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.991 | |
结构2型 | 0.995 |
表2 两种文丘里管式微气泡发生器的压降(ΔP)与液相Reynolds数(Reth)间的拟合关系式
Table 2 Correlations of the pressure drop with respect to Reth under different Venturi-type microbubble generator
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.991 | |
结构2型 | 0.995 |
1 | 周兰, 李兆军. 微细气泡技术标准体系探究[J]. 净水技术, 2021, 40(2): 75-87. |
Zhou L, Li Z J. Exploration of standard system for fine bubble technology[J]. Water Purification Technology, 2021, 40(2): 75-87. | |
2 | Temesgen T, Bui T T, Han M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. |
3 | 居晓峰, 孙立成, 唐文偲, 等. 文丘里式气泡发生器工作特性分析[J]. 核技术, 2014, 37(12): 69-74. |
Ju X F, Sun L C, Tang W C, et al. Analysis of the operating characteristics of a Venturi-type bubble generator for MSR[J]. Nuclear Techniques, 2014, 37(12): 69-74. | |
4 | Kaneko A, Abe Y. Environmentally-friendly washing technology using the microbubble generator with a Venturi tube [J]. Japanese Journal of Multiphase Flow, 2018, 32(2): 231-238. |
5 | Song Y C, Shentu Y Q, Qian Y L, et al. Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV[J]. Nuclear Engineering and Technology, 2021, 53(1): 79-92. |
6 | Kress T S. Mass transfer between small bubbles and liquids in cocurrent turbulent pipeline flow[R]. Office of Scientific and Technical Information (OSTI), 1972. |
7 | Fujiwara A, Takagi S, Watanabe K, et al. Experimental study on the new micro-bubble generator and its application to water purification system[C]//Proceedings of ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA, 2009: 469-473. |
8 | Fujiwara A, Okamoto K, Hashiguchi K, et al. Bubble breakup phenomena in a venturi tube[C]//Proceedings of ASME/JSME 2007 5th Joint Fluids Engineering Conference. San Diego, California, USA, 2009: 553-560. |
9 | Kawakami M, Abe Y, Kaneko A, et al. Effect of temperature change on interfacial behavior of an acoustically levitated droplet[J]. Microgravity Science and Technology, 2010, 22(2): 145-150. |
10 | Kaneko A, Nomura Y, Takagi S, et al. Bubble break-up phenomena in a venturi tube[J]. Transactions of the Japan Society of Mechanical Engineers Series B, 2012, 78(786): 207-217. |
11 | Nomura Y, Uesawa S I, Kaneko A, et al. Study on bubble breakup mechanism in a Venturi tube[C]//Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu, Japan, 2012: 2533-2540. |
12 | Uesawa S I, Kaneko A, Nomura Y, et al. Bubble behavior and flow structure on bubble collapse phenomena in a venturi tube[J]. Japanese Journal of Multiphase Flow, 2013, 26(5): 567-575. |
13 | Sun L C, Mo Z Y, Zhao L, et al. Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR[J]. Annals of Nuclear Energy, 2017, 109: 69-81. |
14 | Reichmann F, Varel F, Kockmann N. Energy optimization of gas–liquid dispersion in micronozzles assisted by design of experiment[J]. Processes, 2017, 5(4): 57. |
15 | Sparrow E M, Abraham J P, Minkowycz W J. Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3079-3083. |
16 | Zhao L, Sun L C, Mo Z Y, et al. An investigation on bubble motion in liquid flowing through a rectangular Venturi channel[J]. Experimental Thermal and Fluid Science, 2018, 97: 48-58. |
17 | Gordiychuk A, Svanera M, Benini S, et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator[J]. Experimental Thermal and Fluid Science, 2016, 70: 51-60. |
18 | Li J J, Song Y C, Yin J L, et al. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. |
19 | 曹俊雅, 马梦杰, 李平平, 等. 进气方向对文丘里微气泡发生器气泡直径的影响[J]. 黄金科学技术, 2017, 25(5): 127-134. |
Cao J Y, Ma M J, Li P P, et al. Effect of bubble intake direction on bubble diameters generated by a Venturi microbubble generator[J]. Gold Science and Technology, 2017, 25(5): 127-134. | |
20 | 赵梁, 杜敏, 莫政宇, 等. 文丘里式气泡发生器渐扩段内单气泡输运过程研究[J]. 原子能科学技术, 2019, 53(6): 1021-1028. |
Zhao L, Du M, Mo Z Y, et al. Transportation of individual bubble in diverging section of Venturi-type bubble generator[J]. Atomic Energy Science and Technology, 2019, 53(6): 1021-1028. | |
21 | Huang J, Sun L C, Liu H T, et al. A review on bubble generation and transportation in Venturi-type bubble generators[J]. Experimental and Computational Multiphase Flow, 2020, 2(3): 123-134. |
22 | Zhao L, Sun L C, Mo Z Y, et al. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles[J]. International Journal of Multiphase Flow, 2019, 114: 192-206. |
23 | Long D E, Villasante Tezanos A G, Wise J N, et al. A guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography[J]. PLoS One, 2019, 14(2): e0211629. |
24 | Abramoff M D, Magelhaes P J, Ram S J. Image processing with Image J[J]. Biophotonics International, 2003, 11: 36-42. |
25 | Mawarni D I, Abdat A, Indarto, et al. Experimental study of the effect of the swirl flow on the characteristics of microbubble generator orifice type[J]. AIP Conference Proceedings, 2020, 2248(1): 040004. |
26 | Basso A, Hamad F A, Ganesan P. Initial results from the experimental and computational study of microbubble generation[C]//Proceedings of the 4th World Congress on Momentum, Heat and Mass Transfer. Orléans, ON, Canada, 2019. |
27 | 吴晅, 李晓瑞, 马骏, 等. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912. |
Wu X, Li X R, Ma J, et al. Behavior characteristics of bubble formation under various nozzle immersion modes[J]. CIESC Journal, 2019, 70(3): 901-912. | |
28 | Kang C, Zhang W, Zou Z W, et al. Effects of initial bubble size on geometric and motion characteristics of bubble released in water[J]. Journal of Central South University, 2018, 25(12): 3021-3032. |
29 | 邵梓一, 张海燕, 孙立成, 等. 文丘里式气泡发生器内气泡破碎机制分析[J]. 化工学报, 2018, 69(6): 2439-2445. |
Shao Z Y, Zhang H Y, Sun L C, et al. Bubble breakup mechanism in Venturi-type bubble generator[J]. CIESC Journal, 2018, 69(6): 2439-2445. | |
30 | 马兆伟. 熔盐堆鼓泡器中气泡动力学研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2019. |
Ma Z W. Bubble dynamics study of bubble generator in molten salt reactor[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2019. | |
31 | Feng Y R, Mu H F, Liu X, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
32 | 田齐伟, 阎昌琪, 孙立成, 等. 棒束通道内两相流动摩擦阻力特性分析[J]. 原子能科学技术, 2015, 49(5): 819-824. |
Tian Q W, Yan C Q, Sun L C, et al. Analysis of frictional resistance of two-phase flow in rod bundle channel[J]. Atomic Energy Science and Technology, 2015, 49(5): 819-824. | |
33 | Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295. |
34 | Sadatomi M, Kawahara A, Matsuura H, et al. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube[J]. Experimental Thermal and Fluid Science, 2012, 41: 23-30. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[15] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1072
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 757
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||