化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6161-6175.DOI: 10.11949/0438-1157.20211264
收稿日期:
2021-09-01
修回日期:
2021-11-03
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
王保国
作者简介:
王培灿(1993—),男,博士研究生,基金资助:
Peican WANG(),Lei WAN,Zi'ang XU,Qin XU,Baoguo WANG()
Received:
2021-09-01
Revised:
2021-11-03
Online:
2021-12-05
Published:
2021-12-22
Contact:
Baoguo WANG
摘要:
开发清洁高效的可再生能源是未来能源转型的必然趋势。氢能作为一种绿色无污染的能源载体,可通过电解水技术实现氢能与电能的高效转化,有望作为风力、光伏发电的重要调节手段。碱性膜电解水制氢能够提高电流密度,增加能量转化效率,优于碱性水溶液电解水制氢;与此同时,可采用铁、镍等非贵金属制备催化剂,克服质子交换膜电解水制氢使用贵金属催化剂带来的设备昂贵、资源受限问题。本文综述了碱性膜电解制氢技术发展现状,重点围绕自支撑催化电极、耐碱腐蚀离子膜、有序结构膜电极开展讨论,包括催化剂制备策略,耐碱离子膜发展现状,以及有序化膜电极的应用优势,阐释电化学工程中的传质与反应耦合原理。本文为进一步研究开发高性能电化学关键材料提供了指导思路,推动电解水制氢技术的发展。
中图分类号:
王培灿, 万磊, 徐子昂, 许琴, 王保国. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
Peican WANG, Lei WAN, Zi'ang XU, Qin XU, Baoguo WANG. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 6161-6175.
项目 | 碱性水溶液 (AWE) | 质子交换膜 (PEMWE) | 碱性离子膜 (AEM) |
---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 |
压强/105 Pa | 1~32 | 1~35 | 1~32 |
电流密度/(A·cm-2) | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 |
标准工况下能耗/(kWh·m-3 H2) | 4.3~5.1 | 4.3~4.6 | 4.2~4.6 |
电解液 | 5~7 mol·L-1 KOH | 纯水 | 1 mol·L-1 KOH/纯水 |
隔膜 | 石棉布、PPS布 | 全氟磺酸膜 | 阴离子膜 |
阳极(析氧电极) | 不锈钢镀镍 | 氧化铱 | 镍网 |
阴极(析氢电极) | 不锈钢镀镍 | 贵金属铂碳 | NiFeCo合金 |
双极板 | 不锈钢镀镍 | 不锈钢镀镍 | 不锈钢镀镍 |
技术成熟度 | 9 | 7 | 4 |
表1 电解水制氢主要技术特性比较
Table 1 Main characters of hydrogen production technologies by water electrolysis
项目 | 碱性水溶液 (AWE) | 质子交换膜 (PEMWE) | 碱性离子膜 (AEM) |
---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 |
压强/105 Pa | 1~32 | 1~35 | 1~32 |
电流密度/(A·cm-2) | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 |
标准工况下能耗/(kWh·m-3 H2) | 4.3~5.1 | 4.3~4.6 | 4.2~4.6 |
电解液 | 5~7 mol·L-1 KOH | 纯水 | 1 mol·L-1 KOH/纯水 |
隔膜 | 石棉布、PPS布 | 全氟磺酸膜 | 阴离子膜 |
阳极(析氧电极) | 不锈钢镀镍 | 氧化铱 | 镍网 |
阴极(析氢电极) | 不锈钢镀镍 | 贵金属铂碳 | NiFeCo合金 |
双极板 | 不锈钢镀镍 | 不锈钢镀镍 | 不锈钢镀镍 |
技术成熟度 | 9 | 7 | 4 |
制备方法 | 优点 | 缺点 | 适用情况 |
---|---|---|---|
水热法/溶剂热法 | 高效,通用,制备催化剂稳定,自支撑与粉末催化剂均可制备 | 需要在高压反应釜中进行具有一定安全风险,且不适用于大面积工业化制备 | 通常用于制备金属氧化物、氢氧化物、羟基氧化物等催化材料 |
电化学沉积法 | 简单,高效,反应时间短,催化剂负载量、形貌可调控 | 大面积制备催化剂时会面临电沉积不均匀的问题 | 需要外加电场 |
化学气相沉积法 | 制备金属磷/硫/硒化物的有效手段 | 通常需要与其他制备方法耦合 | 可用于制备过渡金属磷/硫/硒化物 |
化学溶液法 | 操作简单,反应条件温和,制备成本低,易于放大 | 反应时间较长,金属离子负载量很低 | 大规模制备有独特优势 |
表2 自支撑催化电极制备方法比较
Table 2 Comparisons of preparation methods of self-supported catalysts
制备方法 | 优点 | 缺点 | 适用情况 |
---|---|---|---|
水热法/溶剂热法 | 高效,通用,制备催化剂稳定,自支撑与粉末催化剂均可制备 | 需要在高压反应釜中进行具有一定安全风险,且不适用于大面积工业化制备 | 通常用于制备金属氧化物、氢氧化物、羟基氧化物等催化材料 |
电化学沉积法 | 简单,高效,反应时间短,催化剂负载量、形貌可调控 | 大面积制备催化剂时会面临电沉积不均匀的问题 | 需要外加电场 |
化学气相沉积法 | 制备金属磷/硫/硒化物的有效手段 | 通常需要与其他制备方法耦合 | 可用于制备过渡金属磷/硫/硒化物 |
化学溶液法 | 操作简单,反应条件温和,制备成本低,易于放大 | 反应时间较长,金属离子负载量很低 | 大规模制备有独特优势 |
1 | Abbasi R, Setzler B P, Lin S S, et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers[J]. Advanced Materials, 2019, 31(31): 1805876. |
2 | Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326. |
52 | Wan L, Xu Z A, Wang P C, et al. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis[J]. Journal of Membrane Science, 2021, 618: 118642. |
53 | Oener S Z, Foster M J, Boettcher S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099-1103. |
3 | Zhao Z P, Chen C L, Liu Z Y, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31(31): 1808115. |
4 | Goñi-Urtiaga A, Presvytes D, Scott K. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3358-3372. |
54 | Mayerhöfer B, McLaughlin D, Böhm T, et al. Bipolar membrane electrode assemblies for water electrolysis[J]. ACS Applied Energy Materials, 2020, 3(10): 9635-9644. |
55 | Pletcher D, Li X H. Prospects for alkaline zero gap water electrolysers for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(23): 15089-15104. |
5 | Ganci F, Lombardo S, Sunseri C, et al. Nanostructured electrodes for hydrogen production in alkaline electrolyzer[J]. Renewable Energy, 2018, 123: 117-124. |
6 | Tang C, Wang H F, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(4): 881-889. |
56 | Phillips R, Dunnill C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Advances, 2016, 6(102): 100643-100651. |
57 | Wang G L, Zou L L, Huang Q H, et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications[J]. Journal of Materials Chemistry A, 2019, 7(16): 9447-9477. |
7 | Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 3. |
8 | Mallouk T E. Divide and conquer[J]. Nature Chemistry, 2013, 5(5): 362-363. |
9 | Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis [J]. Advanced Energy Materials, 2021, 11(39): 2170153. |
58 | Shangguan Z X, Li B, Ming P W, et al. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(27): 15111-15139. |
59 | Park Y S, Lee J H, Jang M J, et al. Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer[J]. International Journal of Hydrogen Energy, 2020, 45(1): 36-45. |
60 | Pham C V, Bühler M, Knöppel J, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: 118762. |
61 | Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326. |
62 | Oh J H, Han G H, Kim H, et al. Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 127696. |
63 | Lee J, Jung H, Park Y S, et al. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 127670. |
64 | Kim H, Kim J, Kim J, et al. Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer[J]. Applied Catalysis B: Environmental, 2021, 283: 119596. |
65 | Park Y S, Yang J C, Lee J, et al. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance[J]. Applied Catalysis B: Environmental, 2020, 278: 119276. |
66 | Chen P Z, Hu X L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts[J]. Advanced Energy Materials, 2020, 10(39): 2002285. |
10 | Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016, 19(5): 265-273. |
11 | Miao J, Xiao F X, Yang H B, et al. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Science Advances, 2015, 1(7): e1500259. |
67 | Lagarteira T, Han F, Morawietz T, et al. Highly active screen-printed IrTi4O7 anodes for proton exchange membrane electrolyzers[J]. International Journal of Hydrogen Energy, 2018, 43(35): 16824-16833. |
68 | Feng Q, Wang Q, Zhang Z, et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis[J]. Applied Catalysis B: Environmental, 2019, 244: 494-501. |
69 | Wang X Y, Shao Z G, Li G F, et al. A cocrystallized catalyst-coated membrane with high performance for solid polymer electrolyte water electrolysis[J]. Journal of Power Sources, 2013, 240: 525-529. |
70 | Ghadge S D, Patel P P, Datta M K, et al. First report of vertically aligned (Sn, Ir)O2:F solid solution nanotubes: highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis[J]. Journal of Power Sources, 2018, 392: 139-149. |
71 | Zeng Y C, Guo X Q, Shao Z G, et al. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis[J]. Journal of Power Sources, 2017, 342: 947-955. |
72 | Zeng Y C, Zhang H J, Wang Z Q, et al. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(15): 6521-6533. |
73 | Kim J C, Kim J, Park J C, et al. Ru2P nanofibers for high-performance anion exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 130491. |
74 | Zeng L, Zhao T S, Zhang R H, et al. NiCo2O4 nanowires@MnOx nanoflakes supported on stainless steel mesh with superior electrocatalytic performance for anion exchange membrane water splitting[J]. Electrochemistry Communications, 2018, 87: 66-70. |
75 | Jeon S S, Lim J, Kang P W, et al. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37179-37186. |
12 | Wang X G, Kolen'Ko Y V, Liu L F. Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution[J]. Chemical Communications, 2015, 51(31): 6738-6741. |
13 | Li W, Gao X F, Xiong D H, et al. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability[J]. Advanced Energy Materials, 2017, 7(17): 1602579. |
14 | Zhang N, Gan S Y, Wu T S, et al. Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: an excellent hydrogen evolution 3D cathode[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12193-12202. |
15 | Guo W W, Kim J, Kim H, et al. Cu-Co-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19789-19801. |
16 | Wang Y H, Zhang G X, Xu W W, et al. A 3D nanoporous Ni-Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution[J]. ChemElectroChem, 2014, 1(7): 1138-1144. |
17 | Bai N N, Li Q, Mao D Y, et al. One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29400-29407. |
18 | Xiao J, Lv Q, Zhang Y, et al. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance[J]. RSC Advances, 2016, 6(109): 107859-107864. |
19 | Sun J Y, Ren M Q, Yu L, et al. Highly efficient hydrogen evolution from a mesoporous hybrid of nickel phosphide nanoparticles anchored on cobalt phosphosulfide/phosphide nanosheet arrays[J]. Small, 2019, 15(6): 1804272. |
20 | Wang P C, Wan L, Lin Y Q, et al. MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16566-16574. |
21 | Wang P C, Lin Y Q, Wan L, et al. Core-shell Cu@CoP as highly efficient and durable bifunctional electrodes for electrochemical water splitting[J]. Energy & Fuels, 2020, 34(8): 10276-10281. |
22 | Hou Y, Lohe M R, Zhang J, et al. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting[J]. Energy & Environmental Science, 2016, 9(2): 478-483. |
23 | Liu X P, Gong M X, Xiao D D, et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis[J]. Small, 2020, 16(24): 2000663. |
24 | Shao B, Pang W, Tan X Q, et al. Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: highly efficient and low-cost catalysts for oxygen evolution[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113621. |
25 | Yuan J X, Cheng X D, Wang H Q, et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
26 | Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nature Communications, 2015, 6: 6616. |
27 | Zhang W, Qi J, Liu K Q, et al. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation[J]. Advanced Energy Materials, 2016, 6(12): 1502489. |
28 | Wang P C, Lin Y Q, Wan L, et al. Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6416-6424. |
29 | Wang P C, Wan L, Lin Y Q, et al. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density[J]. ChemSusChem, 2019, 12(17): 4038-4045. |
30 | Cano Z P, Park M G, Lee D U, et al. New interpretation of the performance of nickel-based air electrodes for rechargeable zinc-air batteries[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20153-20166. |
31 | Yang Y Q, Zhang K, Lin H L, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366. |
76 | Lim A, Kim J, Lee H J, et al. Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells[J]. Applied Catalysis B: Environmental, 2020, 272: 118955. |
77 | Jiang G, Yu H M, Li Y H, et al. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15073-15082. |
32 | Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angewandte Chemie International Edition, 2016, 55(23): 6702-6707. |
33 | Cao J M, Zhou J, Zhang Y F, et al. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1752-1760. |
34 | Zhang H J, Li X P, Hähnel A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018, 28(14): 1706847. |
35 | Yang Z, Lin Y, Jiao F X, et al. In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting[J]. Journal of Energy Chemistry, 2020, 49: 189-197. |
36 | Mai W S, Cui Q, Zhang Z Q, et al. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting[J]. ACS Applied Energy Materials, 2020, 3(8): 8075-8085. |
37 | Park J E, Kang S Y, Oh S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
38 | Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
39 | You W, Noonan K J T, Coates G W. Alkaline-stable anion exchange membranes: a review of synthetic approaches[J]. Progress in Polymer Science, 2020, 100: 101177. |
40 | 徐子昂, 万磊, 刘凯, 等. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906. |
Xu Z A, Wan L, Liu K, et al. Recent progress of molecular design for highly stable alkaline anion exchange membranes[J]. CIESC Journal, 2021, 72(8): 3891-3906. | |
78 | Chi J, Yu H, Qin B, et al. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 464-471. |
41 | Cha M S, Park J E, Kim S, et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J]. Energy & Environmental Science, 2020, 13(10): 3633-3645. |
42 | Soni R, Miyanishi S, Kuroki H, et al. Pure water solid alkaline water electrolyzer using fully aromatic and high-molecular-weight poly(fluorene-alt-tetrafluorophenylene)-trimethyl ammonium anion exchange membranes and ionomers[J]. ACS Applied Energy Materials, 2021, 4(2): 1053-1058. |
43 | Fan J T, Willdorf-Cohen S, Schibli E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nature Communications, 2019, 10: 2306. |
44 | Lu W T, Yang Z Z, Huang H, et al. Piperidinium-functionalized poly(vinylbenzyl chloride) cross-linked by polybenzimidazole as an anion exchange membrane with a continuous ionic transport pathway[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21077-21087. |
45 | Li D G, Park E J, Zhu W L, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
46 | Miller H A, Bouzek K, Hnat J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133. |
47 | Shi L, Rossi R, Son M, et al. Using reverse osmosis membranes to control ion transport during water electrolysis[J]. Energy & Environmental Science, 2020, 13(9): 3138-3148. |
48 | Diaz L A, Coppola R E, Abuin G C, et al. Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2017, 535: 45-55. |
49 | Wan L, Xu Z A, Wang B G. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chemical Engineering Journal, 2021, 426: 131340. |
50 | Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-17603. |
51 | Lei Q, Wang B G, Wang P C, et al. Hydrogen generation with acid/alkaline amphoteric water electrolysis[J]. Journal of Energy Chemistry, 2019, 38: 162-169. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[4] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[15] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||