化工学报 ›› 2021, Vol. 72 ›› Issue (2): 921-927.DOI: 10.11949/0438-1157.20200640
黄正梁1,3(),王超1,3,郭燕妮1,3,杨遥1,3(
),孙婧元1,3,王靖岱1,2,3,阳永荣1,2,3
收稿日期:
2020-07-25
修回日期:
2020-09-01
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
杨遥
作者简介:
黄正梁(1982—),男,助理研究员,基金资助:
HUANG Zhengliang1,3(),WANG Chao1,3,GUO Yanni1,3,YANG Yao1,3(
),SUN Jingyuan1,3,WANG Jingdai1,2,3,YANG Yongrong1,2,3
Received:
2020-07-25
Revised:
2020-09-01
Online:
2021-02-05
Published:
2021-02-05
Contact:
YANG Yao
摘要:
缠绕管内二次流能够显著强化管内传质、传热性能。通过测量缠绕管内液体的停留时间分布,利用无量纲方差σ2表征二次流强度,研究了缠绕直径、缠绕角度、缠绕管管径等结构参数对二次流的影响。结果表明:在径向流动未达到极限迁移距离的缠绕管中,随着液体Reynolds数Re的增大,σ2先减小后增大,对应缠绕管内依次出现的湍流作用区和二次流作用区;在径向流动达到极限迁移距离的缠绕管中,随着Re的增大,σ2先减小后增大最后趋于平稳,对应缠绕管内依次出现的湍流作用区、二次流作用区和二次流极限区。从湍流作用区转变为二次流作用区的临界Reynolds数ReS随缠绕管缠绕直径和管径的减小而减小,缠绕角度对ReS的影响较小。
中图分类号:
黄正梁, 王超, 郭燕妮, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于停留时间分布的缠绕管内二次流研究[J]. 化工学报, 2021, 72(2): 921-927.
HUANG Zhengliang, WANG Chao, GUO Yanni, YANG Yao, SUN Jingyuan, WANG Jingdai, YANG Yongrong. Investigation of secondary flow in helical coils based on residence time distribution[J]. CIESC Journal, 2021, 72(2): 921-927.
No. | d/mm | D/mm | α/(°) |
---|---|---|---|
1 | 15 | 325 | 10 |
2 | 15 | 273 | 10 |
3 | 15 | 219 | 10 |
4 | 15 | 325 | 5 |
5 | 15 | 325 | 15 |
6 | 11 | 325 | 10 |
7 | 22 | 325 | 10 |
表1 缠绕管的结构参数
Table 1 Structural parameters of helical coils
No. | d/mm | D/mm | α/(°) |
---|---|---|---|
1 | 15 | 325 | 10 |
2 | 15 | 273 | 10 |
3 | 15 | 219 | 10 |
4 | 15 | 325 | 5 |
5 | 15 | 325 | 15 |
6 | 11 | 325 | 10 |
7 | 22 | 325 | 10 |
No. | d/mm | D/mm | α/(°) | ReS | ReL |
---|---|---|---|---|---|
1 | 15 | 325 | 10 | 12000 | — |
2 | 15 | 273 | 10 | 12000 | — |
3 | 15 | 219 | 10 | 10500 | — |
4 | 15 | 325 | 5 | 10500 | — |
5 | 15 | 325 | 15 | 10500 | — |
6 | 11 | 325 | 10 | 5500 | 11000 |
7 | 22 | 325 | 10 | 22000 | — |
表2 不同缠绕管的临界ReS和ReL
Table 2 ReS and ReL in different helical coils
No. | d/mm | D/mm | α/(°) | ReS | ReL |
---|---|---|---|---|---|
1 | 15 | 325 | 10 | 12000 | — |
2 | 15 | 273 | 10 | 12000 | — |
3 | 15 | 219 | 10 | 10500 | — |
4 | 15 | 325 | 5 | 10500 | — |
5 | 15 | 325 | 15 | 10500 | — |
6 | 11 | 325 | 10 | 5500 | 11000 |
7 | 22 | 325 | 10 | 22000 | — |
1 | Sepehr M, Hashemi S S, Rahjoo M, et al. Prediction of heat transfer, pressure drop and entropy generation in shell and helically coiled finned tube heat exchangers[J]. Chemical Engineering Research and Design, 2018, 134: 277-291. |
2 | Wang G, Wang D, Peng X, et al. Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772-787. |
3 | Gou J, Ma H, Yang Z, et al. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets[J]. Annals of Nuclear Energy, 2017, 110:648-667. |
4 | Bersano A, Falcone N, Bertani C, et al. Conceptual design of a bayonet tube steam generator with heat transfer enhancement using a helical coiled downcomer[J]. Progress in Nuclear Energy, 2018, 108: 243-252. |
5 | 李京瑶, 公茂琼, 汤奇雄, 等. 小型LNG装置缠绕管换热器的设计[J]. 化工学报, 2015, 66: 108-115. |
Li J Y, Gong M Q, Tang Q X, et al. Design of coiled-wound heat exchanger in small plant of LNG[J]. CIESC Journal, 2015, 66: 108-115. | |
6 | 薛佳幸. 缠绕管式换热器换热工艺研究[D]. 兰州: 兰州交通大学, 2015. |
Xue J X. Research on heat transfer process of coil-wound heatexchangers[D]. Lanzhou: Lanzhou Jiaotong University, 2015. | |
7 | Hardik B K, Baburajan P K, Prabhu S V. Local heat transfer coefficient in helical coils with single phase flow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 522-538. |
8 | 丁超, 胡海涛, 丁国良, 等. 运行工况对LNG绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423. |
Ding C, Hu H T, Ding G L, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423. | |
9 | Zeng M, Zhang G, Li Y, et al. Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger[J]. Heat Transfer Engineering, 2015, 36(9): 790-805. |
10 | Xu X, Liu C, Dang C, et al. Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J]. International Journal of Refrigeration, 2016, 67: 190-201. |
11 | Kumar V, Saini S, Sharma M, et al. Pressure drop and heat transfer study in tube-in-tube helical heat exchanger[J]. Chemical Engineering Science, 2006, 61(13): 4403-4416. |
12 | Reddy K V K, Kumar B S P, Gugulothu R, et al. CFD analysis of a helically coiled tube in tube heat exchanger[J]. Materials Today: Proceedings, 2017, 4(2): 2341-2349. |
13 | Andrzejczyk R, Muszynski T, Gosz M. Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry[J]. Chemical Engineering and Processing - Process Intensification, 2018, 132: 114-126. |
14 | Sharma L, Nigam K D P, Roy S. Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes[J]. Chemical Engineering Science, 2017, 160: 227-235. |
15 | 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471. |
Gao X H, Zhou G Y, Tu S D. Study on effects of structural parameters on shell-side heat transfer enhancement in spiral wound heat exchangers[J]. CIESC Journal, 2019, 70(7): 2456-2471. | |
16 | Babita, Sharma S K, Gupta S M, et al. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger[J]. Materials Research Express, 2017, 4(12): 124002. |
17 | Greenspan D. Secondary flow in a curved tube[J]. Journal of Fluid Mechanics, 1973, 57: 167-176. |
18 | Ju H, Huang Z, Xu Y, et al. Hydraulic performance of small bending radius helical coil-pipe[J]. Journal of Nuclear Science and Technology, 2001, 38(10): 826-831. |
19 | Jayakumar J S, Mahajani S M, Mandal J C, et al. CFD analysis of single-phase flows inside helically coiled tubes[J]. Computers & Chemical Engineering, 2010, 34(4): 430-446. |
20 | Guo L, Feng Z, Chen X. An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2601-2610. |
21 | Zhu H, Li Z, Yang X, et al. Flow regime identification for upward two-phase flow in helically coiled tubes[J]. Chemical Engineering Journal, 2017, 308: 606-618. |
22 | Chen H, Zhang B. Fluid flow and mixed convection heat transfer in a rotating curved pipe[J]. International Journal of Thermal Sciences, 2003, 42(11): 1047-1059. |
23 | Hashemi S M, Akhavan-Behabadi M A. An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux[J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 144-151. |
24 | Moosavi A, Abbasalizadeh M, Sadighi D H. Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2016, 78: 1-9. |
25 | Bolinder C J, Bengt S. Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with a finite pitch[J]. International Journal of Heat and Mass Transfer, 1996, 39(15): 3101-3115. |
26 | Manlapaz R L, Churchill S W. Fully developed laminar flow in a helically coiled tube of finite pitch[J]. Chemical Engineering Communications, 2007, 7(1/2/3): 57-78. |
27 | Shiva K, Karanth K V. Numerical analysis of a helical coiled heat exchanger using CFD[J]. International Journal of Thermal Technologies, 2013, 3(4): 126-130. |
28 | Zhang C, Wang D, Xiang S, et al. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation[J]. International Journal of Heat and Mass Transfer, 2017, 113: 332-341. |
29 | Hüttl T J, Wagner C, Friedrich R. Navier-Stokes solutions of laminar flows based on orthogonal helical co-ordinates[J]. International Journal for Numerical Methods in Fluids, 1999, 29(7): 749-763. |
30 | Andrade C R, Zaparoli E L. Effects of temperature-dependent viscosity on fully developed laminar forced convection in a curved duct[J]. International Communications in Heat and Mass Transfer, 2001, 28(2): 211-220. |
31 | Sheeba A, Abhijith C M, Jose P M. Experimental and numerical investigations on the heat transfer and flow characteristics of a helical coil heat exchanger[J]. International Journal of Refrigeration, 2019, 99: 490-497. |
32 | Wang M, Zheng M, Chao M, et al. Experimental and CFD estimation of single-phase heat transfer in helically coiled tubes[J]. Progress in Nuclear Energy, 2019, 112: 185-190. |
33 | Wang K, Xu X, Wu Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. |
34 | Mirgolbabaei H. Numerical investigation of vertical helically coiled tube heat exchangers thermal performance[J]. Applied Thermal Engineering, 2018, 136: 252-259. |
35 | Haryoko L A F, Kurnia J C, Sasmito A P. Numerical investigation of subcooled boiling heat transfer in helically-coiled tube[J]. International Journal of Automotive and Mechanical Engineering, 2020, 17(1): 7675-7686. |
36 | Lin C X, Ebadian M A. Developing turbulent convective heat transfer in helical pipes[J]. International Journal of Heat and Mass Transfer, 1997, 40(16): 3861-3873. |
37 | Ghiyas U D, Chughtai I R, Inayat M H, et al. Salient developments in residence time distribution (RTD) analysis—a review[C]//International Conference on Tracers and Tracing Methods. 2006. |
38 | Rossi D, Gargiulo L, Valitov G, et al. Experimental characterization of axial dispersion in coiled flow inverters[J]. Chemical Engineering Research and Design, 2017, 120: 159-170. |
39 | Rojahn P, Hessel V, Nigam K D P, et al. Applicability of the axial dispersion model to coiled flow inverters containing single liquid phase and segmented liquid-liquid flows[J]. Chemical Engineering Science, 2018, 182: 77-92. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 442
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||