化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1230-1241.DOI: 10.11949/0438-1157.20200855
唐和礼1(
),张冰1(
),黄冬梅1,申渝1,2(
),高旭1,2,时文歆3
收稿日期:2020-06-30
修回日期:2020-09-21
出版日期:2021-03-05
发布日期:2021-03-05
通讯作者:
张冰,申渝
作者简介:唐和礼(1998—),男,硕士研究生,基金资助:
TANG Heli1(
),ZHANG Bing1(
),HUANG Dongmei1,SHEN Yu1,2(
),GAO Xu1,2,SHI Wenxin3
Received:2020-06-30
Revised:2020-09-21
Online:2021-03-05
Published:2021-03-05
Contact:
ZHANG Bing,SHEN Yu
摘要:
膜分离过程中存在的膜污染问题严重制约了膜分离技术的大规模应用。扩展的XDLVO(Derjaguin-Landau-Verwey-Overbeek)理论可以为膜污染机理的阐述提供理论支撑,它不仅可以用来解析及预测膜污染,还可为膜污染控制提供理论指导。介绍了XDLVO理论的分析计算方法,综述了XDLVO理论在不同污染物的膜污染行为解析中的应用,讨论了膜面性质及操作条件对膜污染行为的影响以及XDLVO理论对膜污染控制的指导作用,并提出了XDLVO理论在膜污染行为研究中存在的问题以及对未来研究方向的展望。
中图分类号:
唐和礼, 张冰, 黄冬梅, 申渝, 高旭, 时文歆. XDLVO理论在膜污染解析中的应用研究[J]. 化工学报, 2021, 72(3): 1230-1241.
TANG Heli, ZHANG Bing, HUANG Dongmei, SHEN Yu, GAO Xu, SHI Wenxin. Advances in membrane fouling analysis based on XDLVO theory[J]. CIESC Journal, 2021, 72(3): 1230-1241.
图1 2002年以来发表的基于XDLVO理论研究膜污染的文献数量(数据截止于2020年5月24日)
Fig.1 Numbers of publications on membrane fouling based on XDLVO theory since 2002 (data retrieved on May 24, 2020)
| 污染物-膜材料 | 前期阶段 | 后期阶段 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
ΔGLW/ (mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/ (mJ·m-2) | ΔGTOT/ (mJ·m-2) | MFI×10-3 | ΔGLW/ (mJ·m-2) | ΔGAB/(mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/(mJ·m-2) | MFI×10-3 | |
| TiO2-PES | -5.79 | 24.52 | 0.21 | 18.94 | 3.58 | -11.45 | 25.16 | 0.24 | 13.95 | 1.78 |
| (2 mg/L HA-TiO2)-PES | -5.81 | 23.75 | 0.21 | 18.15 | 8.23 | -11.52 | 24.31 | 0.25 | 13.04 | 3.48 |
| (3 mg/L HA-TiO2)-PES | -5.70 | 22.35 | 0.17 | 16.82 | 11.7 | -11.10 | 21.76 | 0.30 | 10.96 | 3.67 |
| (5 mg/L HA-TiO2)-PES | -5.62 | 22.06 | 0.03 | 16.47 | 20.7 | -10.80 | 21.20 | 0.39 | 10.79 | 4.91 |
| (10 mg/L HA-TiO2)-PES | -5.61 | 20.13 | -0.02 | 14.50 | 27.6 | -10.75 | 17.32 | 0.41 | 6.98 | 5.86 |
| MFI(×10-3)-ΔGTOT线性拟合 | y = -5.49x + 107.6, R2 = 0.93 | y = -0.53x + 9.8, R2 = 0.84 | ||||||||
| TiO2-PVDF | -7.02 | -13.14 | 0.05 | 20.11 | 3.53 | -11.45 | 25.16 | 0.24 | 13.95 | 2.37 |
| (2 mg/L HA-TiO2) -PVDF | -7.04 | -16.89 | 0.05 | -23.90 | 8.78 | -11.52 | 24.31 | 0.25 | 13.04 | 6.29 |
| (3 mg/L HA-TiO2)-PVDF | -6.92 | -19.36 | 0.03 | -26.37 | 12.0 | -11.10 | 21.76 | 0.30 | 10.96 | 6.79 |
| (5 mg/L HA-TiO2)-PVDF | -6.82 | -20.29 | -0.09 | -27.47 | 21.2 | -10.80 | 21.20 | 0.39 | 10.79 | 9.51 |
| (10 mg/L HA-TiO2)-PVDF | -6.80 | -23.30 | -0.36 | -30.54 | 19.0 | -10.75 | 17.32 | 0.41 | 6.98 | 10.8 |
| MFI×10-3 -ΔGTOT线性拟合 | y = 1.68x - 30.3, R2 = 0.82 | y = -1.07x + 19.1, R2 = 0.78 | ||||||||
表1 膜分离过程中HA-TiO2与膜之间的接触界面自由能及其与MFI的相关关系[32]
Table 1 Adhesion interfacial free energies in different phases of membrane filtration with HA-TiO2 and the correlativity of ΔGTOT and membrane fouling index[32]
| 污染物-膜材料 | 前期阶段 | 后期阶段 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
ΔGLW/ (mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/ (mJ·m-2) | ΔGTOT/ (mJ·m-2) | MFI×10-3 | ΔGLW/ (mJ·m-2) | ΔGAB/(mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/(mJ·m-2) | MFI×10-3 | |
| TiO2-PES | -5.79 | 24.52 | 0.21 | 18.94 | 3.58 | -11.45 | 25.16 | 0.24 | 13.95 | 1.78 |
| (2 mg/L HA-TiO2)-PES | -5.81 | 23.75 | 0.21 | 18.15 | 8.23 | -11.52 | 24.31 | 0.25 | 13.04 | 3.48 |
| (3 mg/L HA-TiO2)-PES | -5.70 | 22.35 | 0.17 | 16.82 | 11.7 | -11.10 | 21.76 | 0.30 | 10.96 | 3.67 |
| (5 mg/L HA-TiO2)-PES | -5.62 | 22.06 | 0.03 | 16.47 | 20.7 | -10.80 | 21.20 | 0.39 | 10.79 | 4.91 |
| (10 mg/L HA-TiO2)-PES | -5.61 | 20.13 | -0.02 | 14.50 | 27.6 | -10.75 | 17.32 | 0.41 | 6.98 | 5.86 |
| MFI(×10-3)-ΔGTOT线性拟合 | y = -5.49x + 107.6, R2 = 0.93 | y = -0.53x + 9.8, R2 = 0.84 | ||||||||
| TiO2-PVDF | -7.02 | -13.14 | 0.05 | 20.11 | 3.53 | -11.45 | 25.16 | 0.24 | 13.95 | 2.37 |
| (2 mg/L HA-TiO2) -PVDF | -7.04 | -16.89 | 0.05 | -23.90 | 8.78 | -11.52 | 24.31 | 0.25 | 13.04 | 6.29 |
| (3 mg/L HA-TiO2)-PVDF | -6.92 | -19.36 | 0.03 | -26.37 | 12.0 | -11.10 | 21.76 | 0.30 | 10.96 | 6.79 |
| (5 mg/L HA-TiO2)-PVDF | -6.82 | -20.29 | -0.09 | -27.47 | 21.2 | -10.80 | 21.20 | 0.39 | 10.79 | 9.51 |
| (10 mg/L HA-TiO2)-PVDF | -6.80 | -23.30 | -0.36 | -30.54 | 19.0 | -10.75 | 17.32 | 0.41 | 6.98 | 10.8 |
| MFI×10-3 -ΔGTOT线性拟合 | y = 1.68x - 30.3, R2 = 0.82 | y = -1.07x + 19.1, R2 = 0.78 | ||||||||
| 污染物-膜材料 | 前期阶段 | 后期阶段 | 文献 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ΔGLW/(mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/ (mJ·m-2) | ΔGLW/(mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/ (mJ·m-2) | ||
| polystyrene-Al2O3 | -3.45 | -32.54 | 1.16×10-6 | -35.99 | -6.56 | -80.82 | 2.55×10-6 | -87.38 | [ |
| glass-Al2O3 | -2.16 | 5.55 | 6.27×10-7 | 23.39 | -2.58 | 44.37 | 8.72×10-6 | 41.78 | [ |
| SiO2-PAN | -4.66 | -0.589 | 5.67×10-10 | -5.25 | -2.81 | 9.39 | 5.87×10-10 | 6.58 | [ |
| TiO2-PES | -5.79 | 24.52 | 0.21 | 18.94 | -11.45 | 25.16 | 0.24 | 13.95 | [ |
| TiO2-PVDF | -7.02 | -13.14 | 0.05 | 20.11 | -11.45 | 25.16 | 0.24 | 13.95 | [ |
| SA-PVDF | 1.83 | -19.65 | -0.10 | -17.82 | -3.34 | 12.09 | 0.27 | 8.74 | [ |
| SA-PES | -3.38 | 17.12 | -0.04 | 13.75 | -3.34 | 12.09 | 0.27 | 8.74 | [ |
| BSA-PVDF | 2.03 | -9.31 | 0.08 | -7.21 | -4.13 | 17.60 | 0.09 | 13.56 | [ |
| BSA-PES | -4.20 | 21.14 | -0.52 | 16.43 | -4.13 | 17.60 | 0.09 | 13.56 | [ |
| HA-PVDF① | 33.17 | 620.21 | 49.47 | 702.85 | -27.35 | 1717.42 | 3.30 | 1693.37 | [ |
| HA-PES① | -56.14 | 2512.99 | 101.38 | 2558.23 | -27.35 | 1717.42 | 3.30 | 1693.37 | [ |
| (HA+BSA)-PES① | -31.62 | 221.98 | 51.71 | 241.78 | -20.37 | -162.22 | 5.70 | -176.85 | [ |
| (SiO2-NOM)-PES① | -97.98 | -362.55 | 87.70 | -372.83 | -42.15 | -141.38 | 5.81 | -177.72 | [ |
| 污泥絮体-PVDF | -3.80 | -20.44 | 0.16 | -24.08 | -7.47 | -28.56 | 0.12 | -35.92 | [ |
| HPO-混合纤维素 | -4.69 | -51.35 | -0.65 | -56.69 | -3.45 | -72.35 | 0.02 | -75.78 | [ |
| TPI-混合纤维素 | -5.53 | -38.45 | -0.53 | 44.51 | -4.79 | -39.98 | 0.02 | -44.75 | [ |
| C-HPI-混合纤维素 | -3.70 | 32.63 | -0.33 | 28.60 | -2.15 | 35.56 | 0.04 | 33.45 | [ |
| N-HPI-混合纤维素 | -4.34 | -47.95 | -0.80 | -53.10 | -2.96 | -60.04 | 0.01 | -62.99 | [ |
| 酱油-PVDF(0.45②) | -7.64 | 15.72 | -4.83×10-6 | 8.07 | -5.70 | 25.27 | 4.72×10-10 | 19.87 | [ |
| 酱油-PES(0.45②) | -0.44 | -1.27 | -8.72×10-7 | -1.71 | -5.70 | 25.27 | 4.72×10-10 | 19.87 | [ |
表2 膜分离过程中不同污染物与膜之间的接触界面自由能
Table 2 Adhesion interfacial free energies in different phases of membrane filtration with different foulants
| 污染物-膜材料 | 前期阶段 | 后期阶段 | 文献 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ΔGLW/(mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/ (mJ·m-2) | ΔGLW/(mJ·m-2) | ΔGAB/ (mJ·m-2) | ΔGEL/(mJ·m-2) | ΔGTOT/ (mJ·m-2) | ||
| polystyrene-Al2O3 | -3.45 | -32.54 | 1.16×10-6 | -35.99 | -6.56 | -80.82 | 2.55×10-6 | -87.38 | [ |
| glass-Al2O3 | -2.16 | 5.55 | 6.27×10-7 | 23.39 | -2.58 | 44.37 | 8.72×10-6 | 41.78 | [ |
| SiO2-PAN | -4.66 | -0.589 | 5.67×10-10 | -5.25 | -2.81 | 9.39 | 5.87×10-10 | 6.58 | [ |
| TiO2-PES | -5.79 | 24.52 | 0.21 | 18.94 | -11.45 | 25.16 | 0.24 | 13.95 | [ |
| TiO2-PVDF | -7.02 | -13.14 | 0.05 | 20.11 | -11.45 | 25.16 | 0.24 | 13.95 | [ |
| SA-PVDF | 1.83 | -19.65 | -0.10 | -17.82 | -3.34 | 12.09 | 0.27 | 8.74 | [ |
| SA-PES | -3.38 | 17.12 | -0.04 | 13.75 | -3.34 | 12.09 | 0.27 | 8.74 | [ |
| BSA-PVDF | 2.03 | -9.31 | 0.08 | -7.21 | -4.13 | 17.60 | 0.09 | 13.56 | [ |
| BSA-PES | -4.20 | 21.14 | -0.52 | 16.43 | -4.13 | 17.60 | 0.09 | 13.56 | [ |
| HA-PVDF① | 33.17 | 620.21 | 49.47 | 702.85 | -27.35 | 1717.42 | 3.30 | 1693.37 | [ |
| HA-PES① | -56.14 | 2512.99 | 101.38 | 2558.23 | -27.35 | 1717.42 | 3.30 | 1693.37 | [ |
| (HA+BSA)-PES① | -31.62 | 221.98 | 51.71 | 241.78 | -20.37 | -162.22 | 5.70 | -176.85 | [ |
| (SiO2-NOM)-PES① | -97.98 | -362.55 | 87.70 | -372.83 | -42.15 | -141.38 | 5.81 | -177.72 | [ |
| 污泥絮体-PVDF | -3.80 | -20.44 | 0.16 | -24.08 | -7.47 | -28.56 | 0.12 | -35.92 | [ |
| HPO-混合纤维素 | -4.69 | -51.35 | -0.65 | -56.69 | -3.45 | -72.35 | 0.02 | -75.78 | [ |
| TPI-混合纤维素 | -5.53 | -38.45 | -0.53 | 44.51 | -4.79 | -39.98 | 0.02 | -44.75 | [ |
| C-HPI-混合纤维素 | -3.70 | 32.63 | -0.33 | 28.60 | -2.15 | 35.56 | 0.04 | 33.45 | [ |
| N-HPI-混合纤维素 | -4.34 | -47.95 | -0.80 | -53.10 | -2.96 | -60.04 | 0.01 | -62.99 | [ |
| 酱油-PVDF(0.45②) | -7.64 | 15.72 | -4.83×10-6 | 8.07 | -5.70 | 25.27 | 4.72×10-10 | 19.87 | [ |
| 酱油-PES(0.45②) | -0.44 | -1.27 | -8.72×10-7 | -1.71 | -5.70 | 25.27 | 4.72×10-10 | 19.87 | [ |
| 膜材料名称 | γ- /(mJ·m–2) | ζ /mV | ΔG121 /(mJ·m-2) | 文献 | |||
|---|---|---|---|---|---|---|---|
| 改性膜 | 基膜 | 改性膜 | 基膜 | 改性膜 | 基膜 | ||
| PVDF/PES/PVA | 27.58 | 13.91 | -25.0 | -29.35 | 0.51 | -28.32 | [ |
| PVDF-HEA | 30.13 | 10.48 | -30.83 | -20.95 | 5.24 | -36.92 | [ |
| PES-PVP | 4.23 | 0.47 | — | — | -47.13 | -77.49 | [ |
| PES-PVP-GO | 13.39 | 0.47 | — | — | -21.08 | -77.49 | [ |
| PAN-PAMAM-ETA/NAOH | 52.70 | 7.67 | — | — | 22.55 | -6.14 | [ |
| PVDF@ZnO (100 cycles) | 12.4 | 0.6 | -20.7 | -13.7 | — | — | [ |
| PVDF@ZnO (200 cycles) | 46.3 | 0.6 | -27.8 | -13.7 | — | — | [ |
| PA/Fe@PVDF-OH | 42.34 | 14.65 | -24.24 | -18.40 | — | — | [ |
| PVDF@(TiO2/PSS)7 | 19.6 | 0.53 | -39.4 | -20.3 | — | — | [ |
| PES-Ni@TiO2 | 44.188 | 7.098 | -35.74 | -33.8 | — | — | [ |
| PANI-DBSA | 48.7 | 19.6 | -55.0 | -40.3 | — | — | [ |
| PVDF-GO-Ni | 63.04 | 22.59 | -5.95 | -13.38 | — | — | [ |
表3 改性膜的关键性能参数
Table 3 The key properties of modified membranes
| 膜材料名称 | γ- /(mJ·m–2) | ζ /mV | ΔG121 /(mJ·m-2) | 文献 | |||
|---|---|---|---|---|---|---|---|
| 改性膜 | 基膜 | 改性膜 | 基膜 | 改性膜 | 基膜 | ||
| PVDF/PES/PVA | 27.58 | 13.91 | -25.0 | -29.35 | 0.51 | -28.32 | [ |
| PVDF-HEA | 30.13 | 10.48 | -30.83 | -20.95 | 5.24 | -36.92 | [ |
| PES-PVP | 4.23 | 0.47 | — | — | -47.13 | -77.49 | [ |
| PES-PVP-GO | 13.39 | 0.47 | — | — | -21.08 | -77.49 | [ |
| PAN-PAMAM-ETA/NAOH | 52.70 | 7.67 | — | — | 22.55 | -6.14 | [ |
| PVDF@ZnO (100 cycles) | 12.4 | 0.6 | -20.7 | -13.7 | — | — | [ |
| PVDF@ZnO (200 cycles) | 46.3 | 0.6 | -27.8 | -13.7 | — | — | [ |
| PA/Fe@PVDF-OH | 42.34 | 14.65 | -24.24 | -18.40 | — | — | [ |
| PVDF@(TiO2/PSS)7 | 19.6 | 0.53 | -39.4 | -20.3 | — | — | [ |
| PES-Ni@TiO2 | 44.188 | 7.098 | -35.74 | -33.8 | — | — | [ |
| PANI-DBSA | 48.7 | 19.6 | -55.0 | -40.3 | — | — | [ |
| PVDF-GO-Ni | 63.04 | 22.59 | -5.95 | -13.38 | — | — | [ |
| 1 | Drews A. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures[J]. Journal of Membrane Science, 2010, 363(1/2): 1-28. |
| 2 | 张海丰, 樊雪. 基于XDLVO理论解析MBR膜污染研究进展[J]. 化学通报, 2016, 79(7): 604-609. |
| Zhang H F, Fan X. Research progress in membrane fouling in membrane bioreactor based on XDLVO approach[J]. Chemistry, 2016, 79(7): 604-609. | |
| 3 | 寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论解析膜法水处理过程中膜污染问题的研究[J]. 膜科学与技术, 2017, 37(1): 8-15. |
| Kou C W, Zhang G W, Shen S S, et al. Analysis and prediction of membrane fouling in water treatment based on the approach of the XDLVO theory[J]. Membrane Science and Technology, 2017, 37(1): 8-15. | |
| 4 | Hwang B K, Kim J H, Ahn C H, et al. Effect of disintegrated sludge recycling on membrane permeability in a membrane bioreactor combined with a turbulent jet flow ozone contactor[J]. Water Research, 2010, 44(6): 1833-1840. |
| 5 | Meng F G, Zhang S Q, Oh Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. |
| 6 | 印霞棐. 自生电场膜生物反应器中污染物去除及膜污染行为研究[D]. 无锡: 江南大学, 2019. |
| Yin X F. Study on pollutants removal and membrane fouling behaviour in the spontaneous electric field membrane bioreactor[D]. Wuxi: Jiangnan University, 2019. | |
| 7 | 李宁. 基于原子层沉积的 PVDF 微滤膜表面亲水改性及膜污染控制机制[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
| Li N. Surface hydrophilic modification of PVDF micro-filtration membranes based on atomic layer deposition and mechanism of fouling control[D]. Harbin: Harbin Institute of Technology, 2019. | |
| 8 | Lin H J, Zhang M J, Wang F Y, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies[J]. Journal of Membrane Science, 2014, 460: 110-125. |
| 9 | Sun M, Yan L L, Zhang L H, et al. New insights into the rapid formation of initial membrane fouling after in situ cleaning in a membrane bioreactor[J]. Process Biochemistry, 2019, 78: 108-113. |
| 10 | Lim A L, Bai R B. Membrane fouling and cleaning in microfiltration of activated sludge wastewater[J]. Journal of Membrane Science, 2003, 216(1/2): 279-290. |
| 11 | Meng F G, Chae S R, Drews A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. |
| 12 | Zhang B, Zhang R J, Huang D M, et al. Membrane fouling in microfiltration of alkali/surfactant/polymer flooding oilfield wastewater: effect of interactions of key foulants[J]. Journal of Colloid and Interface Science, 2020, 570: 20-30. |
| 13 | Guo H, Li Z H, Huang J, et al. Microfiltration of soy sauce: efficiency, resistance and fouling mechanism at different operating stages[J]. Separation and Purification Technology, 2020, 240: 116656. |
| 14 | Zhao L H, Qu X L, Zhang M J, et al. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment[J]. Bioresource Technology, 2016, 214: 355-362. |
| 15 | Hong H C, Zhang M J, He Y M, et al. Fouling mechanisms of gel layer in a submerged membrane bioreactor[J]. Bioresource Technology, 2014, 166: 295-302. |
| 16 | 刘晓倩. xDLVO理论定量解析混合有机物微滤膜污染机理[D]. 济南: 山东大学, 2017. |
| Liu X Q. Quantitative analysis of membrane fouling mechanism involved in mixed organics microfiltration utilizing xDLVO theory[D]. Jinan: Shandong University, 2017. | |
| 17 | van Oss C J. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 1-49. |
| 18 | 张媚佳. 膜生物反应器中膜污染的形成机理及其影响因素研究[D]. 金华: 浙江师范大学, 2015. |
| Zhang M J. Study on membrane fouling mechanism and its influence factors in a membrane bioreactor[D]. Jinhua: Zhejiang Normal University, 2015. | |
| 19 | 申露文, 沈宗泽, 王一惠, 等. 膜污染层微生物与聚丙烯微滤膜间的界面作用及其吸附特征[J]. 环境科学学报, 2017, 37(7): 2561-2571. |
| Shen L W, Shen Z Z, Wang Y H, et al. The adsorption characteristics of microorganisms isolated from biofouling layer of MBR and the interaction between the microorganisms and polypropylene microfiltration membrane[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2561-2571. | |
| 20 | 高欣玉, 纵瑞强, 王平, 等. xDLVO理论解析微滤膜海藻酸钠污染中pH影响机制[J]. 中国环境科学, 2014, 34(4): 958-965. |
| Gao X Y, Zong R Q, Wang P, et al. The impact of pH on microfiltration membrane fouling by sodium alginate: mechanism analysis using xDLVO theory[J]. China Environmental Science, 2014, 34(4): 958-965. | |
| 21 | 屈晓璐. 任意粗糙膜表面的构建及其与膜污染界面作用力的关系研究[D]. 金华: 浙江师范大学, 2018. |
| Qu X L. Construction of random rough membrane surface and its relationship with interfacial interactions in membrane fouling[D]. Jinhua: Zhejiang Normal University, 2018. | |
| 22 | 张楠. 超滤膜界面特性与蛋白质和腐殖酸膜污染行为的相关性研究[D]. 西安: 西安建筑科技大学, 2014. |
| Zhang N. The correlation research of UF membranes interface properties and BSA, HA membrane fouling behavior[D]. Xi'an: Xi'an University of Architecture and Technology, 2014. | |
| 23 | Zhao L H, Wang F Y, Weng X X, et al. Novel indicators for thermodynamic prediction of interfacial interactions related with adhesive fouling in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 487: 320-329. |
| 24 | Derjaguin V B. Theorie des Anhaftens kleiner Teilchen[J]. Progress in Surface Science, 1992, 40(1/2/3/4): 6-15. |
| 25 | Wu H H, Shen F, Wang J F, et al. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: interaction energy analysis with the XDLVO approach[J]. Journal of Membrane Science, 2018, 550: 436-447. |
| 26 | Zamani F, Ullah A, Akhondi E, et al. Impact of the surface energy of particulate foulants on membrane fouling[J]. Journal of Membrane Science, 2016, 510: 101-111. |
| 27 | Yin Z Q, Ma Y Q, Tanis-Kanbur B, et al. Fouling behavior of colloidal particles in organic solvent ultrafiltration[J]. Journal of Membrane Science, 2020, 599: 117836. |
| 28 | 王平. xDLVO理论解析溶解性微生物产物微滤膜污染机制[D]. 济南: 山东大学, 2012. |
| Wang P. Analysis of microfiltration membrane fouling by soluble microbial products using xDLVO theory[D]. Jinan: Shandong University, 2012. | |
| 29 | 高欣玉. 腐殖酸微滤膜污染中界面作用力的定量解析及系统阐释[D]. 济南: 山东大学, 2014. |
| Gao X Y. Quantitative analysis and systematic elucidation of the interfacial interactions involved in microfiltration membrane fouling by humic acid[D]. Jinan: Shandong University, 2014. | |
| 30 | 赵应许. xDLVO理论解析不同溶液条件下多糖微滤膜污染行为[D]. 济南: 山东大学, 2014. |
| Zhao Y X. Fouling behavior of polyssachride during microfiltration at various solution conditions: xDLVO approach[D]. Jinan: Shandong University, 2014. | |
| 31 | 周鸣天, 张干伟, 寇朝卫, 等. XDLVO理论分析混合有机污染物的膜污染[J]. 水处理技术, 2020, 46(4): 73-77, 96. |
| Zhou M T, Zhang G W, Kou C W, et al. XDLVO theory analysis of membrane fouling by mixture organic pollutants[J]. Technology of Water Treatment, 2020, 46(4): 73-77, 96. | |
| 32 | 田琳. xDLVO理论解析天然有机物存在下纳米颗粒膜污染行为[D]. 济南: 山东大学, 2017. |
| Tian L. Assessment of the membrane fouling by nanoparticles in the presence of NOM using xDLVO theory[D]. Jinan: Shandong University, 2017. | |
| 33 | 孙春意. xDLVO理论定量解析纳米SiO2和天然有机物超滤膜污染机理[D]. 济南: 山东大学, 2018. |
| Sun C Y. Quantitative analysis of membrane fouling mechanisms involved in ultrafiltration of nano-SiO2 and natural organic using xDLVO theory[D]. Jinan: Shandong University, 2018. | |
| 34 | 彭伟. 基于XDLVO理论对膜生物反应器中膜污染微观界面作用机制的研究[D]. 金华: 浙江师范大学, 2014. |
| Peng W. Study on interfacial interaction mechanisms of membrane fouling in a membrane bioreactor based on XDLVO theory[D]. Jinhua: Zhejiang Normal University, 2014. | |
| 35 | Cai H H, Fan H, Zhao L H, et al. Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis[J]. Journal of Colloid and Interface Science, 2016, 465: 33-41. |
| 36 | Lei Q, Li F Q, Shen L G, et al. Tuning anti-adhesion ability of membrane for a membrane bioreactor by thermodynamic analysis[J]. Bioresource Technology, 2016, 216: 691-698. |
| 37 | 范浩. 表面性质对膜生物反应器中膜污染影响及膜污染控制研究[D]. 金华: 浙江师范大学, 2016. |
| Fan H. Study on effects of surface properties on membrane fouling and the control of membrane fouling[D]. Jinhua: Zhejiang Normal University, 2016. | |
| 38 | Shen L G, Lei Q, Chen J R, et al. Membrane fouling in a submerged membrane bioreactor: impacts of floc size[J]. Chemical Engineering Journal, 2015, 269: 328-334. |
| 39 | Zhao L H, Shen L G, He Y M, et al. Influence of membrane surface roughness on interfacial interactions with sludge flocs in a submerged membrane bioreactor[J]. Journal of Colloid and Interface Science, 2015, 446: 84-90. |
| 40 | Hong H C, Peng W, Zhang M J, et al. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications[J]. Bioresource Technology, 2013, 146: 7-14. |
| 41 | Huang W W, Chu H Q, Dong B Z. Understanding the fouling of algogenic organic matter in microfiltration using membrane-foulant interaction energy analysis: effects of organic hydrophobicity[J]. Colloids and Surfaces B: Biointerfaces, 2014, 122: 447-456. |
| 42 | Huang W W, Chu H Q, Dong B Z, et al. Evaluation of different algogenic organic matters on the fouling of microfiltration membranes[J]. Desalination, 2014, 344: 329-338. |
| 43 | Xu K W, Li Y P, Zou X T, et al. Investigating microalgae cell-microsphere interactions during microalgae harvesting by ballasted dissolved air flotation through XDLVO theory[J]. Biochemical Engineering Journal, 2018, 137: 294-304. |
| 44 | Lu D W, Jia B H, Xu S, et al. Role of pre-coagulation in ultralow pressure membrane system for microcystis aeruginosa-laden water treatment: membrane fouling potential and mechanism[J]. Science of the Total Environment, 2020, 710: 136340. |
| 45 | Feng L, Li X, Song P, et al. Surface interactions and fouling properties of micrococcus luteus with microfiltration membranes[J]. Applied Biochemistry and Biotechnology, 2011, 165(5/6): 1235-1244. |
| 46 | Zhang X R, Wang Z W, Chen M, et al. Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: effects of dosage[J]. Journal of Membrane Science, 2016, 520: 66-75. |
| 47 | Gentile G J, Cruz M C, Rajal V B, et al. Electrostatic interactions in virus removal by ultrafiltration membranes[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1314-1321. |
| 48 | 赵飞, 许柯, 任洪强, 等. XDLVO理论解析有机物和钙离子对纳滤膜生物污染的影响[J]. 中国环境科学, 2015, 35(12): 3602-3611. |
| Zhao F, Xu K, Ren H Q, et al. Impact of organic matter and calcium on nanofiltration membrane biofouling: XDLVO approach[J]. China Environmental Science, 2015, 35(12): 3602-3611. | |
| 49 | Kühnl W, Piry A, Kaufmann V, et al. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach[J]. Journal of Membrane Science, 2010, 352(1/2): 107-115. |
| 50 | Zhang M J, Chen J R, Ma Y J, et al. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor[J]. Bioresource Technology, 2016, 216: 817-823. |
| 51 | Feng S S, Yu G Y, Cai X, et al. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor[J]. Bioresource Technology, 2017, 244: 560-568. |
| 52 | Cai X, Shen L G, Zhang M J, et al. Membrane fouling in a submerged membrane bioreactor: an unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces[J]. Bioresource Technology, 2017, 243: 1121-1132. |
| 53 | Cai X, Yang L N, Wang Z W, et al. Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 500: 79-87. |
| 54 | Mei R W, Li R J, Lin H J, et al. A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor[J]. Bioresource Technology, 2016, 219: 521-526. |
| 55 | 方乘, 杨盛, 吴云, 等. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
| Fang C, Yang S, Wu Y, et al. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723. | |
| 56 | Shen L G, Cui X, Yu G Y, et al. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique[J]. Journal of Colloid and Interface Science, 2017, 494: 194-203. |
| 57 | Li N, Zhang J, Tian Y, et al. Anti-fouling potential evaluation of PVDF membranes modified with ZnO against polysaccharide[J]. Chemical Engineering Journal, 2016, 304: 165-174. |
| 58 | 杜锦滢. ZnS/GO改性PVDF膜的制备及其对水中腐殖酸处理性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| Du J Y. Research on the treatment performance of humic acid in water by the prepared ZnS/GO modified PVDF membrane[D]. Harbin: Harbin Institute of Technology, 2018. | |
| 59 | 赵传起. 氧化石墨烯改性PVDF微孔膜的制备及其在MBR中的性能研究[D]. 大连: 大连理工大学, 2015. |
| Zhao C Q. Study on preparation and antifouling properties of graphene oxide nanosheets modified PVDF membranes in MBRs[D]. Dalian: Dalian University of Technology, 2015. | |
| 60 | 周贤娇, 董秉直. 不同组分的有机物对膜过滤通量下降的影响[J]. 环境科学, 2009, 30(2): 432-438. |
| Zhou X J, Dong B Z. Effect of different organic fraction on membrane flux declines[J]. Environmental Science, 2009, 30(2): 432-438. | |
| 61 | Zhang J, Wang Q Y, Wang Z W, et al. Modification of poly(vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability[J]. Journal of Membrane Science, 2014, 466: 293-301. |
| 62 | Song D, Zhang W J, Cheng W, et al. Micro fine particles deposition on gravity-driven ultrafiltration membrane to modify the surface properties and biofilm compositions: water quality improvement and biofouling mitigation[J]. Chemical Engineering Journal, 2020, 393: 123270. |
| 63 | Li R J, Wang X N, Cai X, et al. A facile strategy to prepare superhydrophilic polyvinylidene fluoride (PVDF) based membranes and the thermodynamic mechanisms underlying the improved performance[J]. Separation and Purification Technology, 2018, 197: 271-280. |
| 64 | Shen L G, Wang H Z, Zhang Y C, et al. New strategy of grafting hydroxyethyl acrylate (HEA) via γ ray radiation to modify polyvinylidene fluoride (PVDF) membrane: thermodynamic mechanisms of the improved antifouling performance[J]. Separation and Purification Technology, 2018, 207: 83-91. |
| 65 | Chen L, Tian Y, Cao C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology[J]. Water Research, 2012, 46(8): 2693-2704. |
| 66 | Choo K H, Lee C H. Effect of anaerobic digestion broth composition on membrane permeability[J]. Water Science and Technology, 1996, 34(9): 173-179. |
| 67 | Zhang M J, Liao B Q, Zhou X L, et al. Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor[J]. Bioresource Technology, 2015, 175: 59-67. |
| 68 | Zhao Y Q, Yu W M, Li R J, et al. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment[J]. Applied Surface Science, 2019, 483: 1006-1016. |
| 69 | Karkooti A, Rastgar M, Nazemifard N, et al. Study on antifouling behaviors of GO modified nanocomposite membranes through QCM-D and surface energetics analysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124332. |
| 70 | Jiang L Y, Yun J H, Wang Y X, et al. High-flux, anti-fouling dendrimer grafted PAN membrane: fabrication, performance and mechanisms[J]. Journal of Membrane Science, 2020, 596: 117743. |
| 71 | Luo J, Chen W W, Song H W, et al. Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment[J]. Science of the Total Environment, 2020, 699: 134398. |
| 72 | Sun T, Liu Y, Shen L G, et al. Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment[J]. Journal of Colloid and Interface Science, 2020, 570: 273-285. |
| 73 | Wang K P, Xu L L, Li K L, et al. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation[J]. Journal of Membrane Science, 2019, 570/571: 371-379. |
| 74 | Li N, Tian Y, Zhao J H, et al. Anti-irreversible fouling of precisely-designed PVDF-ZnO membrane: effects of ion strength and co-existing cations[J]. Applied Surface Science, 2018, 459: 397-405. |
| 75 | Zhao F C, Chu H Q, Su Y M, et al. Microalgae harvesting by an axial vibration membrane: the mechanism of mitigating membrane fouling[J]. Journal of Membrane Science, 2016, 508: 127-135. |
| 76 | Zhao F C, Li Z X, Zhou X L, et al. The comparison between vibration and aeration on the membrane performance in algae harvesting[J]. Journal of Membrane Science, 2019, 592: 117390. |
| [1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
| [2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
| [3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
| [4] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
| [5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
| [6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
| [7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
| [8] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
| [9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
| [10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
| [11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
| [12] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
| [13] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
| [14] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
| [15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号