化工学报 ›› 2021, Vol. 72 ›› Issue (6): 2905-2921.DOI: 10.11949/0438-1157.20201715
王琪1(),赵有璟1,2,刘洋1,王云昊1,王敏2(),项顼1()
收稿日期:
2020-11-30
修回日期:
2021-03-12
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
王敏,项顼
作者简介:
王琪(1995—),女,硕士研究生,基金资助:
WANG Qi1(),ZHAO Youjing1,2,LIU Yang1,WANG Yunhao1,WANG Min2(),XIANG Xu1()
Received:
2020-11-30
Revised:
2021-03-12
Online:
2021-06-05
Published:
2021-06-05
Contact:
WANG Min,XIANG Xu
摘要:
随着锂离子电池在电动汽车、便携式电子设备、电动工具及电网储能中的用量持续增加,锂资源需求量快速增长。我国盐湖集中分布在青藏高原地区,青海盐湖普遍具有高镁锂比、低锂含量的特征。高镁锂比盐湖提锂是世界性难题。本文综述了高镁锂比盐湖卤水镁锂分离与锂提取技术的最新研究进展,包括萃取法、吸附法、反应/分离耦合技术、膜法和电化学法。从各技术原理、特点、性能等方面分析了各方法特征和适用性。在现有技术中,吸附法更适合高镁锂比卤水;萃取法可用于锂浓度较低的卤水;新发展的反应/分离耦合技术能实现高效提锂与镁锂资源综合利用;以纳滤、电渗析、双极膜为代表的膜法具有能耗较低和模块化的优点;电化学法具有装置简单的优势,但仍需进一步优化系统。我国盐湖锂资源提取需提高总收率,提升提锂后资源综合利用程度,发展锂产品高值化、多元化利用途径,加强盐湖提锂的工程化技术研究,突破并掌握核心技术与装备,实现盐湖资源高效、综合、可持续利用的目标。
中图分类号:
王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921.
WANG Qi, ZHAO Youjing, LIU Yang, WANG Yunhao, WANG Min, XIANG Xu. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921.
盐湖地区 | 镁/锂 质量比 | 锂离子浓度/(g/L) | 镁离子浓度/(g/L) | 文献 |
---|---|---|---|---|
察尔汗 | 1437.5 | 0.08 | 115.0 | [ |
一里坪 | 63.7 | 0.379 | 24.15 | [ |
龙木错 | 74.0 | 1.21 | 89.5 | [ |
西台吉乃尔 | 59.1 | 0.26 | 15.36 | [ |
东台吉乃尔 | 40.3 | 0.14 | 5.64 | [ |
大柴旦 | 133.8 | 0.016 | 2.14 | [ |
表1 中国主要高镁锂比盐湖卤水资源组成
Table 1 The compositions of high Mg/Li ratio salt lake brines in China
盐湖地区 | 镁/锂 质量比 | 锂离子浓度/(g/L) | 镁离子浓度/(g/L) | 文献 |
---|---|---|---|---|
察尔汗 | 1437.5 | 0.08 | 115.0 | [ |
一里坪 | 63.7 | 0.379 | 24.15 | [ |
龙木错 | 74.0 | 1.21 | 89.5 | [ |
西台吉乃尔 | 59.1 | 0.26 | 15.36 | [ |
东台吉乃尔 | 40.3 | 0.14 | 5.64 | [ |
大柴旦 | 133.8 | 0.016 | 2.14 | [ |
图5 尖晶石LiMn2O4的晶体结构(锰离子驻留在氧离子形成的八面体中。虚线箭头表示锂的扩散路径)(a);锂扩散通道从四面体8a位置通过由六个空位包围的八面体16c空位到相邻的8a位置的示意图(b)[23]
Fig.5 Crystal structure of spinel LiMn2O4(Manganese ions reside in the octahedra formed by oxygen ions. The dotted arrow denotes a lithium diffusion path) (a); Schematic illustration of the lithium diffusion channel from a tetrahedral 8a site to an adjacent 8a site through an octahedral 16c vacancy surrounded by six manganese ions in the octahedral 16d gate sites (b)[23]
图11 反应/分离耦合技术分离盐湖卤水中镁、锂的理论判据边界条件[59]
Fig.11 Theoretical criterion and boundary conditions for separation of magnesium and lithium in salt lake brine by reaction-coupled separation technology[59]
图14 液膜萃取和电渗析夹心式液膜电渗析系统回收Li+[77]
Fig.14 Liquid membrane extraction and electrodialysis sandwich liquid membrane electrodialysis recovery Li+ system[77]
图15 BMED与NF、RO、CED一体化膜从盐湖卤水中制取LiOH[79]
Fig.15 Schematic diagram of the production of LiOH from salt lake brine with integrated membranes of BMED, NF, RO and CED[79]
方法 | 优势 | 尚存问题 | |
---|---|---|---|
萃取法 | 有机溶剂萃取 | 选择性高 | 成本高,腐蚀,严重环境污染 |
离子液体萃取 | 污染较有机萃取剂少,绿色环保 | 萃取剂制取复杂、造价高 | |
吸附法 | 锰系离子筛 | 吸附容量高,选择性高 | 酸处理腐蚀污染,吸附剂溶损严重 |
钛系离子筛 | 吸附容量高,稳定 | 酸处理吸附剂溶损严重,易团聚 | |
铝系吸附剂 | 选择性高,不需酸处理 | 吸附容量低,造粒后容量衰减 | |
反应/分离耦合法 | 反应条件温和,镁锂同时回收,资源综合利用率高 | 引入钠盐 | |
膜法 | 纳滤 | 流程简单、尺寸筛选效应高 | 镁离子透过率较高,膜易污染、前处理要求较高 |
电渗析 | 能耗低,有效分离二价离子 | 无法分离单价金属离子 | |
双极膜 | 能耗低,直接合成LiOH | 无法处理高镁锂比卤水 | |
电化学法 | 离子捕获系统 | 无酸洗脱,稳定性强 | 能耗高,电解液要求高,耗电量大 |
摇椅电池系统 | 可逆性,环境友好性 |
表2 现有盐湖卤水锂提取技术比较
Table 2 Summary of existing lithium extraction techniques
方法 | 优势 | 尚存问题 | |
---|---|---|---|
萃取法 | 有机溶剂萃取 | 选择性高 | 成本高,腐蚀,严重环境污染 |
离子液体萃取 | 污染较有机萃取剂少,绿色环保 | 萃取剂制取复杂、造价高 | |
吸附法 | 锰系离子筛 | 吸附容量高,选择性高 | 酸处理腐蚀污染,吸附剂溶损严重 |
钛系离子筛 | 吸附容量高,稳定 | 酸处理吸附剂溶损严重,易团聚 | |
铝系吸附剂 | 选择性高,不需酸处理 | 吸附容量低,造粒后容量衰减 | |
反应/分离耦合法 | 反应条件温和,镁锂同时回收,资源综合利用率高 | 引入钠盐 | |
膜法 | 纳滤 | 流程简单、尺寸筛选效应高 | 镁离子透过率较高,膜易污染、前处理要求较高 |
电渗析 | 能耗低,有效分离二价离子 | 无法分离单价金属离子 | |
双极膜 | 能耗低,直接合成LiOH | 无法处理高镁锂比卤水 | |
电化学法 | 离子捕获系统 | 无酸洗脱,稳定性强 | 能耗高,电解液要求高,耗电量大 |
摇椅电池系统 | 可逆性,环境友好性 |
1 | Geological Survey U.S.. Mineral Commodity Summaries 2020[EB/OL]. U.S. Government Publishing Office, U.S. Geological Survey, 2020. [2021-03-11]. . |
2 | Guan P Y, Zhou L, Yu Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
3 | Sun X, Hao H, Zhao F Q, et al. Tracing global lithium flow: a trade-linked material flow analysis[J]. Resources, Conservation and Recycling, 2017, 124: 50-61. |
4 | He M Y, Luo C G, Yang H J, et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes[J]. Ore Geology Reviews, 2020, 117: 103277. |
5 | Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook[J]. Environmental Science: Water Research & Technology, 2017, 3(4): 593-597. |
6 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
7 | 张宝全. 柴达木盆地盐湖卤水提锂研究概况[J]. 海湖盐与化工, 2000, 29(4): 9-13, 27. |
Zhang B Q. General situation of research on extracting lithium from salt lake brine in Qaidam Basin[J]. Sea-Lake Salt and Chemical Industry, 2000, 29(4): 9-13, 27. | |
8 | Yu J J, Zheng M P, Wu Q, et al. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115: 133-144. |
9 | Zhang L C, Li L J, Shi D, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system[J]. Separation and Purification Technology, 2017, 188: 167-173. |
10 | Zhang L C, Li L J, Shi D, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J]. Hydrometallurgy, 2018, 175: 35-42. |
11 | Zhang L C, Li L J, Rui H M, et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction[J]. Journal of Hazardous Materials, 2020, 398: 122840. |
12 | 李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J]. 盐湖研究, 2018, 26(4): 1-10. |
Li L J, Peng X W, Shi D, et al. Eco-friendly separation and effective applications of lithium resources from various brine with lithium: their extractant and extraction system[J]. Journal of Salt Lake Research, 2018, 26(4): 1-10. | |
13 | Zhou Z Y, Fan J H, Liu X T, et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent[J]. Hydrometallurgy, 2020, 191: 105244. |
14 | Su H, Li Z, Zhang J, et al. Combining selective extraction and easy stripping of lithium using a ternary synergistic solvent extraction system through regulation of Fe3+ coordination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1971-1979. |
15 | Su H, Li Z, Zhang J, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507[J]. Hydrometallurgy, 2020, 197: 105487. |
16 | Shi C L, Jia Y Z, Zhang C, et al. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate[J]. Fusion Engineering and Design, 2015, 90: 1-6. |
17 | Okazoe S, Yasaka Y, Ueno M, et al. Formate ionic liquids playing the roles of reducer and stabilizer for the synthesis of noble metal nanoparticles[J]. Chemistry Letters, 2017, 46(9):1344-1346. |
18 | Shi C L, Jing Y, Xiao J, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
19 | Gao D L, Yu X P, Guo Y F, et al. Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene[J]. Chemical Research in Chinese Universities, 2015, 31(4): 621-626. |
20 | Shi C L, Jing Y, Jia Y Z. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J]. Journal of Molecular Liquids, 2016, 215: 640-646. |
21 | Wang Y, Liu H T, Fan J H, et al. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3062-3072. |
22 | Chen W, Li X W, Chen L L, et al. Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3[J]. Chemical Engineering Journal, 2020: 127648. |
23 | Xiao W J, Xin C, Li S B, et al. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21): 9893-9898. |
24 | Hunter J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2): 142-147. |
25 | Clearfield A. Inorganic ion exchangers, past, present, and future[J]. Solvent Extraction and Ion Exchange, 2000, 18(4): 655-678. |
26 | Sato K, Poojary D M, Clearfield A, et al. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties[J]. Journal of Solid State Chemistry, 1997, 131(1): 84-93. |
27 | Feng Q, Miyai Y, Kanoh H, et al. Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites[J]. Langmuir, 1992, 8(7): 1861-1867. |
28 | Gao A L, Sun Z H, Li S P, et al. The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl[J]. Dalton Transactions, 2018, 47(11): 3864-3871. |
29 | Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Materials, 2000, 12(10): 3151-3157. |
30 | Zhao Q, Gao J M, Guo Y X, et al. Facile synthesis of magnetically recyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018, 47(10): 1308-1310. |
31 | Wang H S, Cui J J, Li M L, et al. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO[J]. Chemical Engineering Journal, 2020, 389: 124410. |
32 | Xue F, Zhang X X, Niu Y, et al. Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2312-2318. |
33 | Marthi R, Smith Y R. Application and limitations of a H2TiO3 - diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent[J]. Separation and Purification Technology, 2021, 254: 117580. |
34 | Zhang L Y, He G, Zhou D L, et al. Study on transformation mechanism of lithium titanate modified with hydrochloric acid[J]. Ionics, 2016, 22(11): 2007-2014. |
35 | Wei S D, Wei Y F, Chen T, et al. Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407. |
36 | Wang S L, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017, 174: 21-28. |
37 | He G, Zhang L Y, Zhou D L, et al. The optimal condition for H2TiO3-lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design[J]. Ionics, 2015, 21(8): 2219-2226. |
38 | Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption[J]. RSC Advances, 2016, 6(104): 102608-102616. |
39 | Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
40 | Wang S L, Zheng S L, Wang Z M, et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J]. Chemical Engineering Journal, 2018, 332: 160-168. |
41 | Graham T R, Hu J Z, Zhang X, et al. Unraveling gibbsite transformation pathways into LiAl-LDH in concentrated lithium hydroxide[J]. Inorganic Chemistry, 2019, 58(18): 12385-12394. |
42 | David F, Vokhmin V, Ionova G. Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions[J]. Journal of Molecular Liquids, 2001, 90(1/2/3): 45-62. |
43 | Kiriukhin M Y, Collins K D. Dynamic hydration numbers for biologically important ions[J]. Biophysical Chemistry, 2002, 99(2): 155-168. |
44 | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
45 | Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153-160. |
46 | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
47 | Zhong J, Lin S, Yu J G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107-113. |
48 | Jiang H X, Yang Y, Sun S Y, et al. Adsorption of lithium ions on lithium-aluminum hydroxides: equilibrium and kinetics[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 544-555. |
49 | Jiang H X, Zhang S Y, Yang Y, et al. Synergic and competitive adsorption of Li-Na-MgCl2 onto lithium-aluminum hydroxides[J]. Adsorption, 2020, 26(7): 1039-1049. |
50 | Chen J, Lin S, Yu J G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines[J]. Journal of Hazardous Materials, 2020, 388: 122101. |
51 | Zhong J, Lin S, Yu J G. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. |
52 | Jiang H X, Yang Y, Yu J G. Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns[J]. Separation and Purification Technology, 2020, 241: 116682. |
53 | Camera-Roda G, Loddo V, Palmisano L, et al. Process intensification in a photocatalytic membrane reactor: analysis of the techniques to integrate reaction and separation[J]. Chemical Engineering Journal, 2017, 310: 352-359. |
54 | Qing W H, Wu J Q, Deng Y J, et al. A novel catalytically active membrane with highly porous catalytic layer for the conversion enhancement of esterification: focusing on the reduction of mass transfer resistance of the catalytic layer[J]. Journal of Membrane Science, 2017, 539: 359-367. |
55 | Zhu X F, Yang W S. Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling[J]. Advanced Materials, 2019, 31(50): 1902547. |
56 | Santaella M A, Jiménez L E, Orjuela A, et al. Design of thermally coupled reactive distillation schemes for triethyl citrate production using economic and controllability criteria[J]. Chemical Engineering Journal, 2017, 328: 368-381. |
57 | Guzmán-Martínez C E, Castro-Montoya A J, Nápoles-Rivera F. Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor-separator process and azeotropic distillation[J]. Clean Technologies and Environmental Policy, 2019, 21(10): 2061-2071. |
58 | Guo X Y, Hu S F, Wang C X, et al. Highly efficient separation of magnesium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6618-6626. |
59 | Sun Y, Yun R P, Zang Y F, et al. Highly efficient lithium recovery from pre-synthesized chlorine-ion-intercalated LiAl-layered double hydroxides via a mild solution chemistry process[J]. Materials, 2019, 12(12): 1968. |
60 | Hu S F, Sun Y, Pu M, et al. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology[J]. Separation and Purification Technology, 2019, 229: 115813. |
61 | Sun Y, Guo X Y, Hu S F, et al. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material[J]. Journal of Energy Chemistry, 2019, 34: 80-87. |
62 | Gong L Y, Ouyang W, Li Z R, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41. |
63 | Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
64 | Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
65 | Li Y, Zhao Y J, Wang M. Effects of pH and salinity on the separation of magnesium and lithium from brine by nanofiltration[J]. Desalination and Water Treatment, 2017, 97: 141-150. |
66 | Zhang C Y, Mu Y X, Zhao S, et al. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane[J]. Desalination, 2020, 496: 114710. |
67 | Li X H, Zhang C J, Zhang S N, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
68 | Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
69 | Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. |
70 | Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2016, 55(48): 15120-15124. |
71 | Peng H W, Zhao Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31(14): 2009430. |
72 | Zhao W Y, Zhou M M, Yan B H, et al. Waste conversion and resource recovery from wastewater by ion exchange membranes: state-of-the-art and perspective[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6025-6039. |
73 | Jiang C X, Wang Y M, Wang Q Y, et al. Production of lithium hydroxide from lake brines through electro–electrodialysis with bipolar membranes (EEDBM)[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6103-6112. |
74 | Nie X Y, Sun S Y, Song X F, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
75 | Ying J D, Luo M J, Jin Y, et al. Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes[J]. Desalination, 2020, 492: 114621. |
76 | Liu G, Zhao Z W, He L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
77 | Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596: 117685. |
78 | Qiu Y B, Yao L, Tang C, et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019, 465: 1-12. |
79 | Zhao Y J, Wang H Y, Li Y, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J]. Desalination, 2020, 493: 114620. |
80 | Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. |
81 | Zhou G L, Chen L L, Chao Y H, et al. Progress in electrochemical lithium ion pumping for lithium recovery[J]. Journal of Energy Chemistry, 2021, 59: 431-445. |
82 | Kanoh H, Ooi K, Miyai Y, et al. Selective electroinsertion of lithium ions into a platinum/λ-manganese dioxide electrode in the aqueous phase[J]. Langmuir, 1991, 7(9): 1841-1842. |
83 | Kanoh H, Ooi K, Miyai Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. |
84 | Xu X, Zhou Y, Feng Z W, et al. A self-supported λ-MnO2 film electrode used for electrochemical lithium recovery from brines[J]. ChemPlusChem, 2018, 83(6): 521-528. |
85 | Zhao X Y, Feng M H, Jiao Y X, et al. Lithium extraction from brine in an ionic selective desalination battery[J]. Desalination, 2020, 481: 114360. |
86 | Zhao X Y, Li G Y, Feng M H, et al. Semi-continuous electrochemical extraction of lithium from brine using CF-NMMO/AC asymmetric hybrid capacitors[J]. Electrochimica Acta, 2020, 331: 135285. |
87 | Pasta M, Battistel A, La Mantia F. Batteries for lithium recovery from brines[J]. Energy & Environmental Science, 2012, 5(11): 9487. |
88 | Li Z, Liu D F, Xiong J C, et al. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis[J]. Waste Management, 2020, 107: 1-8. |
89 | He L H, Xu W H, Song Y F, et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018, 2(2): 1700079. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[11] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||